Effect of anti-inflammatory treatment on systemic inflammation, immune function, and endometrial health in postpartum dairy cows.
Animals
Cattle
Female
Anti-Inflammatory Agents, Non-Steroidal
/ pharmacology
Endometritis
/ drug therapy
Endometrium
/ cytology
Energy Metabolism
Glucose Tolerance Test
Immunity, Innate
/ drug effects
Inflammation
/ drug therapy
Insulin-Like Growth Factor I
/ analysis
Meloxicam
/ pharmacology
Milk
Neutrophils
/ drug effects
Postpartum Period
Proof of Concept Study
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
23 03 2020
23 03 2020
Historique:
received:
13
01
2020
accepted:
06
03
2020
entrez:
7
4
2020
pubmed:
7
4
2020
medline:
17
12
2020
Statut:
epublish
Résumé
Systemic inflammation (SI) is increasingly studied in several species because it may be central in many metabolic disturbances and be a risk factor for clinical disease. This proof-of-concept study evaluated the effects of the anti-inflammatory drug meloxicam on markers of SI and energy metabolism, polymorphonuclear neutrophil (PMN) function, and endometritis in clinically healthy postpartum dairy cows. Cows received meloxicam (0.5 mg/kg of body weight; n = 20) once daily for 4 days (10-13 days postpartum) or were untreated (n = 22). Blood samples were collected -7, 1, 3, 5, 7, 10, 11, 12, 13, 14, 18, 21, 28, and 35 days relative to calving to measure serum concentrations of metabolic and inflammatory markers. Function of peripheral blood PMN were evaluated at 5, 10, 14, and 21, and proportion of PMN in endometrial cytology were performed at 5, 10, 14, 21, 28 and 35 days postpartum. Meloxicam decreased serum haptoglobin from the second until the last day of treatment, and improved indicators of energy metabolism (lesser β-hydroxybutyrate and greater insulin-like growth factor-1 during treatment, and greater glucose at the end of treatment than control cows). This improved PMN function at 14 days postpartum, but the endometrial inflammatory status was not affected.
Identifiants
pubmed: 32251312
doi: 10.1038/s41598-020-62103-x
pii: 10.1038/s41598-020-62103-x
pmc: PMC7090035
doi:
Substances chimiques
Anti-Inflammatory Agents, Non-Steroidal
0
Insulin-Like Growth Factor I
67763-96-6
Meloxicam
VG2QF83CGL
Types de publication
Clinical Trial, Veterinary
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
5236Références
McGarry, J. D. What if Minkowski had been ageusic? An alternative angle on diabetes. Science. 258, 766–770 (1992).
doi: 10.1126/science.1439783
Linné, Y. Effects of obesity on women’s reproduction and complications during pregnancy. Obes. Rev. 5, 137–143 (2004).
doi: 10.1111/j.1467-789X.2004.00147.x
LeBlanc, S. Monitoring metabolic health of dairy cattle in the transition period. J. Reprod. Dev. 56, 29–35 (2010).
doi: 10.1262/jrd.1056S29
Pascottini, O. B. et al. Feed restriction to induce and meloxicam to mitigate potential systemic inflammation in dairy cows before calving. J. Dairy Sci. 102, 9285–9297 (2019).
doi: 10.3168/jds.2019-16558
Trevisi, E., Amadori, M., Cogrossi, S., Razzuoli, E. & Bertoni, G. Metabolic stress and inflammatory response in high-yielding, periparturient dairy cows. Res. Vet. Sci. 93, 695–704 (2012).
doi: 10.1016/j.rvsc.2011.11.008
Bradford, B., Yuan, K., Farney, J., Mamedova, L. & Carpenter, A. Invited review: Inflammation during the transition to lactation: New adventures with an old flame. J. Dairy Sci. 98, 6631–6650 (2015).
doi: 10.3168/jds.2015-9683
De Koster, J. et al. The contribution of hormone sensitive lipase to adipose tissue lipolysis and its regulation by insulin in periparturient dairy cows. Scientific Reports. 8, 13378 (2018).
doi: 10.1038/s41598-018-31582-4
pubmed: 6127149
pmcid: 6127149
Huzzey, J. M., Nydam, D. V., Grant, R. J. & Overton, T. R. Associations of prepartum plasma cortisol, haptoglobin, fecal cortisol metabolites, and non-esterified fatty acids with postpartum health status in Holstein dairy cows. J. Dairy Sci. 94, 5878–5889 (2011).
doi: 10.3168/jds.2010-3391
Eckersall, P. D. & Bell, R. Acute phase proteins: Biomarkers of infection and inflammation in veterinary medicine. Vet. J. 185, 23–27 (2010).
doi: 10.1016/j.tvjl.2010.04.009
McCarthy, M. M., Yasui, T., Felippe, M. J. B. & Overton, T. R. Associations between the degree of early lactation inflammation and performance, metabolism, and immune function in dairy cows. J. Dairy Sci. 99, 680–700 (2016).
doi: 10.3168/jds.2015-9694
pubmed: 26601582
pmcid: 26601582
Slattery, M. L. et al. Aspirin, NSAIDs, and colorectal cancer: possible involvement in an insulin-related pathway. Cancer Epidemiol. Biomarkers Prev. 13, 538–545 (2004).
pubmed: 15066917
pmcid: 15066917
Fontana, L., Eagon, J. C., Trujillo, M. E., Scherer, P. E. & Klein, D. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes. 56, 1010–1013 (2007).
doi: 10.2337/db06-1656
Drackley, J. K. ADSA Foundation Scholar Award. Biology of dairy cows during the transition period: The final frontier? J. Dairy Sci. 82, 2259–2273 (1999).
doi: 10.3168/jds.S0022-0302(99)75474-3
Seifi, H. A., LeBlanc, S. J., Leslie, K. E. & Duffield, T. F. Metabolic predictors of post-partum disease and culling risk in dairy cattle. Vet. J. 188, 216–220 (2011).
doi: 10.1016/j.tvjl.2010.04.007
Kasimanickam, R. K. et al. Associations among serum pro- and anti-inflammatory cytokines, metabolic mediators, body condition, and uterine disease in postpartum dairy cows. Reprod. Biol. Endocrinol. 11, 103 (2013).
doi: 10.1186/1477-7827-11-103
pubmed: 3830449
pmcid: 3830449
Yasui, T., McCann, K., Gilbert, R. O., Nydam, D. V. & Overton, T. R. Associations of cytological endometritis with energy metabolism and inflammation during the periparturient period and early lactation in dairy cows. J. Dairy Sci. 97, 2763–2770 (2014).
doi: 10.3168/jds.2013-7322
Cheong, S. H. et al. Uterine and systemic inflammation influences ovarian follicular function in postpartum dairy cows. PLoS One. 12, 5 (2017).
Sheldon, I. M., Cronin, J. G. & Bromfield, J. J. Tolerance and innate immunity shape the development of postpartum uterine disease and the impact of endometritis in dairy cattle. Annu Rev Anim Biosci. 7, 361–384 (2018).
doi: 10.1146/annurev-animal-020518-115227
pubmed: 6450715
pmcid: 6450715
Prunner, I. et al. Dynamics of bacteriologic and cytologic changes in the uterus of postpartum dairy cows. Theriogenology. 82, 1316–1322 (2014).
doi: 10.1016/j.theriogenology.2014.08.018
Gilbert, R. O. & Santos, N. R. Dynamics of postpartum endometrial cytology and bacteriology and their relationship to fertility in dairy cows. Theriogenology. 85, 1367–1374 (2016).
doi: 10.1016/j.theriogenology.2015.10.045
LeBlanc, S. J. Reproductive tract inflammatory disease in postpartum dairy cows. Animal. 8, 54–63 (2014).
doi: 10.1017/S1751731114000524
Dubuc, J., Duffield, T. F., Leslie, K. E., Walton, J. S. & LeBlanc, S. J. Definitions and diagnosis of postpartum endometritis in dairy cows. J. Dairy Sci. 93, 5225–5234 (2010).
doi: 10.3168/jds.2010-3428
Wagener, K., Gabler, C. & Drillich, M. A review of the ongoing discussion about definition, diagnosis and pathomechanism of subclinical endometritis in dairy cows. Theriogenology. 94, 21–30 (2017).
doi: 10.1016/j.theriogenology.2017.02.005
Gilbert, R. O. Symposium review: Mechanisms of disruption of fertility by infectious diseases of the reproductive tract. J. Dairy Sci. 102, 3754–3765 (2019).
doi: 10.3168/jds.2018-15602
Hammon, D. S., Evjen, I. M., Dhiman, T. R., Goff, J. P. & Walters, J. L. Neutrophil function and energy status in Holstein cows with uterine health disorders. Vet. Immunol. Immunopathol. 113, 21–29 (2006).
doi: 10.1016/j.vetimm.2006.03.022
Ster, C., Loiselle, M. C. & Lacasse, P. Effect of postcalving serum nonesterified fatty acids concentration on the functionality of bovine immune cells. J. Dairy Sci. 95, 708–717 (2012).
doi: 10.3168/jds.2011-4695
pubmed: 22281335
pmcid: 22281335
Wittrock, J. A. M. Associations among neutrophil function, metabolic indicators, and reproductive Health in Dairy Cows. MSc Thesis, University of Guelph. (2012).
Hundal, R. S. et al. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J. Clin. Invest. 109, 1321–1326 (2002).
doi: 10.1172/JCI0214955
pubmed: 12021247
pmcid: 12021247
Priest, N. V. et al. The responsiveness of subclinical endometritis to a nonsteroidal anti-inflammatory drug in pasture-grazed dairy cows. J. Dairy Sci. 96, 4323–4332 (2013).
doi: 10.3168/jds.2012-6266
pubmed: 23660148
pmcid: 23660148
Carpenter, A. J. et al. Hot topic: Early postpartum treatment of commercial dairy cows with nonsteroidal anti-inflammatory drugs increases whole-lactation milk yield. J. Dairy Sci. 99, 672–679 (2016).
doi: 10.3168/jds.2015-10048
Shock, D. A. et al. Evaluating the impact of meloxicam oral suspension administered at parturition on subsequent production, health, and culling in dairy cows: A randomized clinical field trial. PLoS ONE. 13, e0209236 (2018).
doi: 10.1371/journal.pone.0209236
pubmed: 6291144
pmcid: 6291144
Montgomery, S. R. et al. Effects of sodium salicylate on glucose kinetics and insulin signaling in postpartum dairy cows. J. Dairy Sci. 102, 1617–1629 (2019).
doi: 10.3168/jds.2018-15312
Matteo, G., Mauro, C. & Massimo, M. Cows response to glucose tolerance test (GTT) and periparturient diseases: Preliminary study. J. Dairy. Sci. 92, 385. (Abstr.) (2009).
Miltenburg, C. L., Duffield, T. F., Bienzle, D., Scholtz, E. & LeBlanc, S. J. The effect of prepartum feeding and lying space on metabolic health and immune function. J. Dairy Sci. 101, 5294–5306 (2018).
doi: 10.3168/jds.2017-13481
Makimura, S. & Suzuki, N. Quantitative determination of bovine serum haptoglobin and its elevation in some inflammatory diseases. J. Vet. Sci. 44, 15–21 (1982).
Skinner, J. G., Brown, R. A. L. & Roberts, L. Bovine haptoglobin response in clinically defined field conditions. Vet. Rec. 128, 147–149 (1991).
doi: 10.1136/vr.128.7.147
pubmed: 1903006
pmcid: 1903006
Pascottini, O. B. et al. Technical note: Assessment of neutrophil endocytosis and proteolytic degradation and its relationship with phagocytosis and oxidative burst in dairy cows. J. Dairy Sci. 102, 9396–9400 (2019).
doi: 10.3168/jds.2019-16687
pubmed: 31400893
pmcid: 31400893
Van Schyndel, S. J., Bogado Pascottini, O. & LeBlanc, S. J. Comparison of cow-side diagnostic techniques for subclinical endometritis in dairy cows. Theriogenology. 120, 117–122 (2018).
doi: 10.1016/j.theriogenology.2018.08.001
Pascottini, O. B. et al. Distribution of inflammation and association between active and chronic alterations within the endometrium of dairy cows. Reprod. Domest. Anim. 51, 751–757 (2016).
doi: 10.1111/rda.12742
Furst, D. Meloxicam: selective COX-2 inhibition in clinical practice. Semin. Arthritis Rheum. 26, 21–27 (1997).
doi: 10.1016/S0049-0172(97)80049-2
Warner, T. D. et al. Nonsteroidal drug selectivity for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis. Proc. Natl. Acad. Sci. 96, 7563–7568 (1999).
doi: 10.1073/pnas.96.13.7563
Lees, P., Landoni, M. F., Giraudel, J. & Toutain, P. L. Pharmacodynamics and pharmacokinetics of nonsteroidal anti-inflammatory drugs in species of veterinary interest. J. Vet. Pharmacol. Therap. 27, 479–490 (2004).
doi: 10.1111/j.1365-2885.2004.00617.x
Díaz-González, F. & Sánchez-Madrid, F. NSAIDs: learning new tricks from old drugs. Eur. J. Immunol. 45, 679–686 (2015).
doi: 10.1002/eji.201445222
pubmed: 5065088
pmcid: 5065088
Barnes, P. J. & Karin, M. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N. Engl. J. Med. 36, 1066–1071 (1997).
doi: 10.1056/NEJM199704103361506
Huzzey, J. M. et al. Haptoglobin as an early indicator of metritis. J. Dairy Sci. 92, 621–625 (2009).
doi: 10.3168/jds.2008-1526
Dubuc, J., Duffield, T. F., Leslie, K. E., Walton, J. S. & LeBlanc, S. J. Risk factors for postpartum uterine diseases in dairy cows. J. Dairy Sci. 93, 5764–5771 (2010).
doi: 10.3168/jds.2010-3429
Galvão, K. N. et al. Association between uterine disease and indicators of neutrophil and systemic energy status in lactating Holstein cows. J. Dairy Sci. 93, 2926–2937 (2010).
doi: 10.3168/jds.2009-2551
Grummer, R. R. Impact of changes in organic nutrient metabolism on feeding the transition cow. J. Anim. Sci. 73, 2820–2833 (1995).
doi: 10.2527/1995.7392820x
LeBlanc, S. J. Interactions of metabolism, inflammation, and reproductive tract health in the postpartum period in dairy cattle. Reprod. Domest. Anim. 47, 18–30 (2012).
doi: 10.1111/j.1439-0531.2012.02109.x
Vazquez-Añon, M., Bertics, S., Luck, M., Grummer, R. R. & Pinheiro, J. Peripartum liver triglyceride and plasma metabolites in dairy cows. J. Dairy Sci. 77, 1521–1528 (1994).
doi: 10.3168/jds.S0022-0302(94)77092-2
pubmed: 8083410
pmcid: 8083410
Adewuyi, A. A., Gruys, E. & van Eerdenburg, F. Non esterified fatty acids (NEFA) in dairy cattle. A review. Vet. Q. 27, 117–126 (2005).
doi: 10.1080/01652176.2005.9695192
pubmed: 16238111
pmcid: 16238111
Allen, M. S. & Piantoni, P. Metabolic control of feed intake: Implications for metabolic disease of fresh cows. Vet. Clin. North Am. Food Anim. Pract. 29, 279–297 (2013).
doi: 10.1016/j.cvfa.2013.04.001
pubmed: 23809892
pmcid: 23809892
Sheldon, I. M., Cronin, J. G., Pospiech, M. & Turner, M. L. Symposium review: Mechanisms linking metabolic stress with innate immunity in the endometrium. J. Dairy Sci. 101, 3655–3664 (2018).
doi: 10.3168/jds.2017-13135
pubmed: 28888597
pmcid: 28888597
Kehrli, M. E. Jr., Nonnecke, B. J. & Roth, J. A. Alterations in bovine neutrophil function during the periparturient period. Am. J. Vet. Res. 50, 207–214 (1989).
pubmed: 2541640
pmcid: 2541640
Gilbert, R. O., Gröhn, Y. T., Miller, P. M. & Hoffman, D. J. Effect of parity on periparturient neutrophil function in dairy cows. Vet. Immunol. Immunopathol. 36, 75–82 (1993).
doi: 10.1016/0165-2427(93)90007-Q
pubmed: 8383376
pmcid: 8383376
Cai, T. Q. et al. Association between neutrophil functions and periparturient disorders in cows. Am. J. Vet. Res. 55, 934–943 (1994).
Borregaard, N. & Herlin, T. Energy metabolism of human neutrophils during phagocytosis. J. Clin. Invest. 70, 550–557 (1982).
doi: 10.1172/JCI110647
pubmed: 370256
pmcid: 370256
Weisdorf, D. J., Craddock, P. R. & Jacob, H. S. Granulocytes utilize different energy sources for movement and phagocytosis. Inflammation. 6, 245–256 (1982).
doi: 10.1007/BF00916406
Suriyasathaporn, W., Heuer, C., Noordhuizen-Stassen, E. N. & Schukken, Y. H. Hyperketonemia and the impairment of udder defense: A review. Vet. Res. 31, 397–412 (2000).
doi: 10.1051/vetres:2000128
Underhill, D. M. & Goodridge, H. S. Information processing during phagocytosis. Nat. Rev. Immunol. 12, 492–502 (2012).
doi: 10.1038/nri3244
pubmed: 5570470
pmcid: 5570470
Turner, M. L., Cronin, J. G., Noleto, P. G. & Sheldon, I. M. Glucose availability and AMP-activated protein kinase link energy metabolism and innate immunity in the bovine endometrium. PLoS One 11, e0151416 (2016).
doi: 10.1371/journal.pone.0151416
pubmed: 4790959
pmcid: 4790959
Bertoni, G., Trevisi, E., Han, X. & Bionaz, M. Effects of inflammatory conditions on liver activity in puerperium period and consequences for performance in dairy cows. J. Dairy Sci. 91, 3300–3310 (2008).
doi: 10.3168/jds.2008-0995
Burke, C. R. et al. Relationships between endometritis and metabolic state during the transition period in pasture-grazed dairy cows. J. Dairy Sci. 93, 5363–5373 (2010).
doi: 10.3168/jds.2010-3356
Pascottini, O. B., Hostens, M., Sys, P., Vercauteren, P. & Opsomer, G. Cytological endometritis at artificial insemination in dairy cows: prevalence and effect on pregnancy outcome. J. Dairy Sci. 100, 588–597 (2017).
doi: 10.3168/jds.2016-11529
Meier, S. et al. Treatment with a nonsteroidal anti-inflammatory drug after calving did not improve milk production, health, or reproduction parameters in pasture-grazed dairy cows. J. Dairy Sci. 97, 2932–2943 (2014).
doi: 10.3168/jds.2013-7838
Madoz, L. V. et al. The relationship between endometrial cytology during estrous cycle and cutoff points for the diagnosis of subclinical endometritis in grazing dairy cows. J. Dairy. Sci. 96, 2333–4339 (2013).
doi: 10.3168/jds.2012-6269
Farney, J. K. et al. Sodium salicylate treatment in early lactation increases whole-lactation milk and milk fat yield in mature dairy cows. J. Dairy Sci. 96, 7709–7718 (2013).
doi: 10.3168/jds.2013-7088
Farney, J. K. et al. Anti-inflammatory salicylate treatment alters the metabolic adaptations to lactation in dairy cattle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, 110–117 (2013).
doi: 10.1152/ajpregu.00152.2013