Metabolic profiling of tissue-specific insulin resistance in human obesity: results from the Diogenes study and the Maastricht Study.
Adult
Female
Humans
Insulin Resistance
Ketone Bodies
/ blood
Liver
/ metabolism
Male
Metabolomics
Middle Aged
Multicenter Studies as Topic
Muscle, Skeletal
/ metabolism
Obesity
/ metabolism
Observational Studies as Topic
Overweight
/ metabolism
Prospective Studies
Randomized Controlled Trials as Topic
Journal
International journal of obesity (2005)
ISSN: 1476-5497
Titre abrégé: Int J Obes (Lond)
Pays: England
ID NLM: 101256108
Informations de publication
Date de publication:
06 2020
06 2020
Historique:
received:
27
06
2019
accepted:
04
03
2020
revised:
25
02
2020
pubmed:
24
3
2020
medline:
30
10
2021
entrez:
24
3
2020
Statut:
ppublish
Résumé
Recent evidence indicates that insulin resistance (IR) in obesity may develop independently in different organs, representing different etiologies toward type 2 diabetes and other cardiometabolic diseases. The aim of this study was to investigate whether IR in the liver and IR in skeletal muscle are associated with distinct metabolic profiles. This study includes baseline data from 634 adults with overweight or obesity (BMI ≥ 27 kg/m Both HIRI and MISI were associated with higher levels of valine, isoleucine, oxo-isovaleric acid, alanine, lactate, and triglycerides, and lower levels of glycine (all p < 0.05). HIRI was also associated with higher levels of leucine, hydroxyisobutyrate, tyrosine, proline, creatine, and n-acetyl and lower levels of acetoacetate and 3-OH-butyrate (all p < 0.05). Except for valine, these results were replicated for all available metabolites in the Maastricht Study. In persons with obesity without diabetes, both liver and muscle IR show a circulating metabolic profile of elevated (branched-chain) amino acids, lactate, and triglycerides, and lower glycine levels, but only liver IR associates with lower ketone body levels and elevated ketogenic amino acids in circulation, suggestive of decreased ketogenesis. This knowledge might enhance developments of more targeted tissue-specific interventions to prevent progression to more severe disease stages.
Sections du résumé
BACKGROUND
Recent evidence indicates that insulin resistance (IR) in obesity may develop independently in different organs, representing different etiologies toward type 2 diabetes and other cardiometabolic diseases. The aim of this study was to investigate whether IR in the liver and IR in skeletal muscle are associated with distinct metabolic profiles.
METHODS
This study includes baseline data from 634 adults with overweight or obesity (BMI ≥ 27 kg/m
RESULTS
Both HIRI and MISI were associated with higher levels of valine, isoleucine, oxo-isovaleric acid, alanine, lactate, and triglycerides, and lower levels of glycine (all p < 0.05). HIRI was also associated with higher levels of leucine, hydroxyisobutyrate, tyrosine, proline, creatine, and n-acetyl and lower levels of acetoacetate and 3-OH-butyrate (all p < 0.05). Except for valine, these results were replicated for all available metabolites in the Maastricht Study.
CONCLUSIONS
In persons with obesity without diabetes, both liver and muscle IR show a circulating metabolic profile of elevated (branched-chain) amino acids, lactate, and triglycerides, and lower glycine levels, but only liver IR associates with lower ketone body levels and elevated ketogenic amino acids in circulation, suggestive of decreased ketogenesis. This knowledge might enhance developments of more targeted tissue-specific interventions to prevent progression to more severe disease stages.
Identifiants
pubmed: 32203114
doi: 10.1038/s41366-020-0565-z
pii: 10.1038/s41366-020-0565-z
doi:
Substances chimiques
Ketone Bodies
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1376-1386Références
Kelly T, Yang W, Chen CS, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes. 2008;32:1431–7.
doi: 10.1038/ijo.2008.102
Hruby A, Manson JE, Qi L, Malik VS, Rimm EB, Sun Q, et al. Determinants and consequences of obesity. Am J Public Health. 2016;106:1656–62.
pubmed: 27459460
pmcid: 4981805
doi: 10.2105/AJPH.2016.303326
Primeau V, Coderre L, Karelis AD, Brochu M, Lavoie ME, Messier V, et al. Characterizing the profile of obese patients who are metabolically healthy. Int J Obes. 2011;35:971–81.
doi: 10.1038/ijo.2010.216
Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444:840–6.
pubmed: 17167471
doi: 10.1038/nature05482
Shulman GI. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N Engl J Med. 2014;371:1131–41.
pubmed: 25229917
doi: 10.1056/NEJMra1011035
Stinkens R, Goossens GH, Jocken JW, Blaak EE. Targeting fatty acid metabolism to improve glucose metabolism. Obes Rev. 2015;16:715–57.
pubmed: 26179344
doi: 10.1111/obr.12298
Rask-Madsen C, Kahn CR. Tissue-specific insulin signaling, metabolic syndrome, and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2012;32:2052–9.
pubmed: 22895666
pmcid: 3511859
doi: 10.1161/ATVBAHA.111.241919
Yu H, Zhou D, Jia W, Guo Z. Locating the source of hyperglycemia: liver versus muscle. J Diabetes. 2012;4:30–6.
pubmed: 22074132
pmcid: 4234049
doi: 10.1111/j.1753-0407.2011.00170.x
Zheng J, Woo SL, Hu X, Botchlett R, Chen L, Huo Y, et al. Metformin and metabolic diseases: a focus on hepatic aspects. Front Med. 2015;9:173–86.
pubmed: 25676019
pmcid: 4567274
doi: 10.1007/s11684-015-0384-0
Blanco-Rojo R, Alcala-Diaz JF, Wopereis S, Perez-Martinez P, Quintana-Navarro GM, Marin C, et al. The insulin resistance phenotype (muscle or liver) interacts with the type of diet to determine changes in disposition index after 2 years of intervention: the CORDIOPREV-DIAB randomised clinical trial. Diabetologia. 2016;59:67−76.
pubmed: 26474775
doi: 10.1007/s00125-015-3776-4
Otten J, Stomby A, Waling M, Isaksson A, Soderstrom I, Ryberg M, et al. A heterogeneous response of liver and skeletal muscle fat to the combination of a Paleolithic diet and exercise in obese individuals with type 2 diabetes: a randomised controlled trial. Diabetologia. 2018;61:1548–59.
pubmed: 29696296
pmcid: 6445456
doi: 10.1007/s00125-018-4618-y
Klein MS, Shearer J. Metabolomics and type 2 diabetes: translating basic research into clinical application. J Diabetes Res. 2016;2016:3898502.
pubmed: 26636104
doi: 10.1155/2016/3898502
Pallares-Mendez R, Aguilar-Salinas CA, Cruz-Bautista I, Del Bosque-Plata L. Metabolomics in diabetes, a review. Ann Med. 2016;48:89–102.
pubmed: 26883715
doi: 10.3109/07853890.2015.1137630
Palmer ND, Okut H, Hsu FC, Ng MCY, Chen YI, Goodarzi MO, et al. Metabolomics identifies distinctive metabolite signatures for measures of glucose homeostasis: the Insulin Resistance Atherosclerosis Family Study (IRAS-FS). J Clin Endocrinol Metab. 2018;103:1877–88.
pubmed: 29546329
pmcid: 6456957
doi: 10.1210/jc.2017-02203
van der Kolk BW, Vogelzangs N, Jocken JWE, Valsesia A, Hankemeier T, Astrup A, et al. Plasma lipid profiling of tissue-specific insulin resistance in human obesity. Int J Obes. 2019;43:989−98.
Larsen TM, Dalskov S, van Baak M, Jebb S, Kafatos A, Pfeiffer A, et al. The diet, obesity and genes (diogenes) dietary study in eight European countries—a comprehensive design for long-term intervention. Obes Rev. 2010;11:76–91.
pubmed: 19470086
doi: 10.1111/j.1467-789X.2009.00603.x
Schram MT, Sep SJ, van der Kallen CJ, Dagnelie PC, Koster A, Schaper N, et al. The Maastricht Study: an extensive phenotyping study on determinants of type 2 diabetes, its complications and its comorbidities. Eur J Epidemiol. 2014;29:439–51.
pubmed: 24756374
doi: 10.1007/s10654-014-9889-0
Abdul-Ghani MA, Matsuda M, Balas B, DeFronzo RA. Muscle and liver insulin resistance indexes derived from the oral glucose tolerance test. Diabetes Care. 2007;30:89–94.
pubmed: 17192339
doi: 10.2337/dc06-1519
Wurtz P, Kangas AJ, Soininen P, Lawlor DA, Davey Smith G, Ala-Korpela M. Quantitative serum nuclear magnetic resonance metabolomics in large-scale epidemiology: a primer on -omic technologies. Am J Epidemiol. 2017;186:1084–96.
pubmed: 29106475
pmcid: 5860146
doi: 10.1093/aje/kwx016
Laffel L. Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res Rev. 1999;15:412–26.
pubmed: 10634967
doi: 10.1002/(SICI)1520-7560(199911/12)15:6<412::AID-DMRR72>3.0.CO;2-8
Soeters MR, Sauerwein HP, Faas L, Smeenge M, Duran M, Wanders RJ, et al. Effects of insulin on ketogenesis following fasting in lean and obese men. Obesity. 2009;17:1326–31.
pubmed: 19369940
Cobb J, Eckhart A, Perichon R, Wulff J, Mitchell M, Adam KP, et al. A novel test for IGT utilizing metabolite markers of glucose tolerance. J Diabetes Sci Technol. 2015;9:69–76.
pubmed: 25261439
doi: 10.1177/1932296814553622
Suhre K, Meisinger C, Doring A, Altmaier E, Belcredi P, Gieger C, et al. Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS One. 2010;5:e13953.
pubmed: 21085649
pmcid: 2978704
doi: 10.1371/journal.pone.0013953
Wurtz P, Makinen VP, Soininen P, Kangas AJ, Tukiainen T, Kettunen J, et al. Metabolic signatures of insulin resistance in 7098 young adults. Diabetes. 2012;61:1372–80.
pubmed: 22511205
pmcid: 3357275
doi: 10.2337/db11-1355
Vice E, Privette JD, Hickner RC, Barakat HA. Ketone body metabolism in lean and obese women. Metabolism. 2005;54:1542–5.
pubmed: 16253646
doi: 10.1016/j.metabol.2005.05.023
Mahendran Y, Vangipurapu J, Cederberg H, Stancakova A, Pihlajamaki J, Soininen P, et al. Association of ketone body levels with hyperglycemia and type 2 diabetes in 9398 Finnish men. Diabetes. 2013;62:3618–26.
pubmed: 23557707
pmcid: 3781437
doi: 10.2337/db12-1363
Pietilainen KH, Naukkarinen J, Rissanen A, Saharinen J, Ellonen P, Keranen H, et al. Global transcript profiles of fat in monozygotic twins discordant for BMI: pathways behind acquired obesity. PLoS Med. 2008;5:e51.
pubmed: 18336063
pmcid: 2265758
doi: 10.1371/journal.pmed.0050051
Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9:311–26.
pubmed: 19356713
pmcid: 3640280
doi: 10.1016/j.cmet.2009.02.002
Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17:448–53.
pubmed: 21423183
pmcid: 3126616
doi: 10.1038/nm.2307
Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BA, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535:376–81.
pubmed: 27409811
doi: 10.1038/nature18646
Mardinoglu A, Gogg S, Lotta LA, Stancakova A, Nerstedt A, Boren J, et al. Elevated plasma levels of 3-hydroxyisobutyric acid are associated with incident type 2 diabetes. EBioMedicine. 2018;27:151–5.
pubmed: 29246479
doi: 10.1016/j.ebiom.2017.12.008
Giesbertz P, Daniel H. Branched-chain amino acids as biomarkers in diabetes. Curr Opin Clin Nutr Metab Care. 2016;19:48–54.
pubmed: 26485337
doi: 10.1097/MCO.0000000000000235
Herman MA, She P, Peroni OD, Lynch CJ, Kahn BB. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels. J Biol Chem. 2010;285:11348–56.
pubmed: 20093359
pmcid: 2857013
doi: 10.1074/jbc.M109.075184
Lackey DE, Lynch CJ, Olson KC, Mostaedi R, Ali M, Smith WH, et al. Regulation of adipose branched-chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity. Am J Physiol Endocrinol Metab. 2013;304:E1175–87.
pubmed: 23512805
pmcid: 3680678
doi: 10.1152/ajpendo.00630.2012
She P, Van Horn C, Reid T, Hutson SM, Cooney RN, Lynch CJ. Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. Am J Physiol Endocrinol Metab. 2007;293:E1552–63.
pubmed: 17925455
pmcid: 2767201
doi: 10.1152/ajpendo.00134.2007
Shimomura Y, Obayashi M, Murakami T, Harris RA. Regulation of branched-chain amino acid catabolism: nutritional and hormonal regulation of activity and expression of the branched-chain alpha-keto acid dehydrogenase kinase. Curr Opin Clin Nutr Metab Care. 2001;4:419–23.
pubmed: 11568504
doi: 10.1097/00075197-200109000-00013
Burrill JS, Long EK, Reilly B, Deng Y, Armitage IM, Scherer PE, et al. Inflammation and ER stress regulate branched-chain amino acid uptake and metabolism in adipocytes. Mol Endocrinol. 2015;29:411–20.
pubmed: 25635940
pmcid: 4347289
doi: 10.1210/me.2014-1275
Badoud F, Lam KP, DiBattista A, Perreault M, Zulyniak MA, Cattrysse B, et al. Serum and adipose tissue amino acid homeostasis in the metabolically healthy obese. J Proteome Res. 2014;13:3455–66.
pubmed: 24933025
doi: 10.1021/pr500416v
Saad MJ, Santos A, Prada PO. Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology. 2016;31:283–93.
pubmed: 27252163
doi: 10.1152/physiol.00041.2015
Wurtz P, Soininen P, Kangas AJ, Ronnemaa T, Lehtimaki T, Kahonen M, et al. Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care. 2013;36:648–55.
pubmed: 23129134
pmcid: 3579331
doi: 10.2337/dc12-0895
Seibert R, Abbasi F, Hantash FM, Caulfield MP, Reaven G, Kim SH. Relationship between insulin resistance and amino acids in women and men. Physiol Rep. 2015;3:5.
doi: 10.14814/phy2.12392
Adeva-Andany M, Souto-Adeva G, Ameneiros-Rodriguez E, Fernandez-Fernandez C, Donapetry-Garcia C, Dominguez-Montero A. Insulin resistance and glycine metabolism in humans. Amino Acids. 2018;50:11–27.
pubmed: 29094215
doi: 10.1007/s00726-017-2508-0
Floegel A, Stefan N, Yu Z, Muhlenbruch K, Drogan D, Joost HG, et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes. 2013;62:639–48.
pubmed: 23043162
pmcid: 3554384
doi: 10.2337/db12-0495
Sparks JD, Sparks CE, Adeli K. Selective hepatic insulin resistance, VLDL overproduction, and hypertriglyceridemia. Arterioscler Thromb Vasc Biol. 2012;32:2104–12.
pubmed: 22796579
doi: 10.1161/ATVBAHA.111.241463
Magkos F, Patterson BW, Mohammed BS, Klein S, Mittendorfer B. Women produce fewer but triglyceride-richer very low-density lipoproteins than men. J Clin Endocrinol Metab. 2007;92:1311–8.
pubmed: 17264179
doi: 10.1210/jc.2006-2215
Wang X, Magkos F, Mittendorfer B. Sex differences in lipid and lipoprotein metabolism: it’s not just about sex hormones. J Clin Endocrinol Metab. 2011;96:885–93.
pubmed: 21474685
pmcid: 3070248
doi: 10.1210/jc.2010-2061
Muniyappa R, Tella SH, Sortur S, Mszar R, Grewal S, Abel BS, et al. Predictive accuracy of surrogate indices for hepatic and skeletal muscle insulin sensitivity. J Endocr Soc. 2019;3:108–18.
pubmed: 30675598
doi: 10.1210/js.2018-00206