Metabolic profiling of tissue-specific insulin resistance in human obesity: results from the Diogenes study and the Maastricht Study.


Journal

International journal of obesity (2005)
ISSN: 1476-5497
Titre abrégé: Int J Obes (Lond)
Pays: England
ID NLM: 101256108

Informations de publication

Date de publication:
06 2020
Historique:
received: 27 06 2019
accepted: 04 03 2020
revised: 25 02 2020
pubmed: 24 3 2020
medline: 30 10 2021
entrez: 24 3 2020
Statut: ppublish

Résumé

Recent evidence indicates that insulin resistance (IR) in obesity may develop independently in different organs, representing different etiologies toward type 2 diabetes and other cardiometabolic diseases. The aim of this study was to investigate whether IR in the liver and IR in skeletal muscle are associated with distinct metabolic profiles. This study includes baseline data from 634 adults with overweight or obesity (BMI ≥ 27 kg/m Both HIRI and MISI were associated with higher levels of valine, isoleucine, oxo-isovaleric acid, alanine, lactate, and triglycerides, and lower levels of glycine (all p < 0.05). HIRI was also associated with higher levels of leucine, hydroxyisobutyrate, tyrosine, proline, creatine, and n-acetyl and lower levels of acetoacetate and 3-OH-butyrate (all p < 0.05). Except for valine, these results were replicated for all available metabolites in the Maastricht Study. In persons with obesity without diabetes, both liver and muscle IR show a circulating metabolic profile of elevated (branched-chain) amino acids, lactate, and triglycerides, and lower glycine levels, but only liver IR associates with lower ketone body levels and elevated ketogenic amino acids in circulation, suggestive of decreased ketogenesis. This knowledge might enhance developments of more targeted tissue-specific interventions to prevent progression to more severe disease stages.

Sections du résumé

BACKGROUND
Recent evidence indicates that insulin resistance (IR) in obesity may develop independently in different organs, representing different etiologies toward type 2 diabetes and other cardiometabolic diseases. The aim of this study was to investigate whether IR in the liver and IR in skeletal muscle are associated with distinct metabolic profiles.
METHODS
This study includes baseline data from 634 adults with overweight or obesity (BMI ≥ 27 kg/m
RESULTS
Both HIRI and MISI were associated with higher levels of valine, isoleucine, oxo-isovaleric acid, alanine, lactate, and triglycerides, and lower levels of glycine (all p < 0.05). HIRI was also associated with higher levels of leucine, hydroxyisobutyrate, tyrosine, proline, creatine, and n-acetyl and lower levels of acetoacetate and 3-OH-butyrate (all p < 0.05). Except for valine, these results were replicated for all available metabolites in the Maastricht Study.
CONCLUSIONS
In persons with obesity without diabetes, both liver and muscle IR show a circulating metabolic profile of elevated (branched-chain) amino acids, lactate, and triglycerides, and lower glycine levels, but only liver IR associates with lower ketone body levels and elevated ketogenic amino acids in circulation, suggestive of decreased ketogenesis. This knowledge might enhance developments of more targeted tissue-specific interventions to prevent progression to more severe disease stages.

Identifiants

pubmed: 32203114
doi: 10.1038/s41366-020-0565-z
pii: 10.1038/s41366-020-0565-z
doi:

Substances chimiques

Ketone Bodies 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1376-1386

Références

Kelly T, Yang W, Chen CS, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes. 2008;32:1431–7.
doi: 10.1038/ijo.2008.102
Hruby A, Manson JE, Qi L, Malik VS, Rimm EB, Sun Q, et al. Determinants and consequences of obesity. Am J Public Health. 2016;106:1656–62.
pubmed: 27459460 pmcid: 4981805 doi: 10.2105/AJPH.2016.303326
Primeau V, Coderre L, Karelis AD, Brochu M, Lavoie ME, Messier V, et al. Characterizing the profile of obese patients who are metabolically healthy. Int J Obes. 2011;35:971–81.
doi: 10.1038/ijo.2010.216
Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444:840–6.
pubmed: 17167471 doi: 10.1038/nature05482
Shulman GI. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N Engl J Med. 2014;371:1131–41.
pubmed: 25229917 doi: 10.1056/NEJMra1011035
Stinkens R, Goossens GH, Jocken JW, Blaak EE. Targeting fatty acid metabolism to improve glucose metabolism. Obes Rev. 2015;16:715–57.
pubmed: 26179344 doi: 10.1111/obr.12298
Rask-Madsen C, Kahn CR. Tissue-specific insulin signaling, metabolic syndrome, and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2012;32:2052–9.
pubmed: 22895666 pmcid: 3511859 doi: 10.1161/ATVBAHA.111.241919
Yu H, Zhou D, Jia W, Guo Z. Locating the source of hyperglycemia: liver versus muscle. J Diabetes. 2012;4:30–6.
pubmed: 22074132 pmcid: 4234049 doi: 10.1111/j.1753-0407.2011.00170.x
Zheng J, Woo SL, Hu X, Botchlett R, Chen L, Huo Y, et al. Metformin and metabolic diseases: a focus on hepatic aspects. Front Med. 2015;9:173–86.
pubmed: 25676019 pmcid: 4567274 doi: 10.1007/s11684-015-0384-0
Blanco-Rojo R, Alcala-Diaz JF, Wopereis S, Perez-Martinez P, Quintana-Navarro GM, Marin C, et al. The insulin resistance phenotype (muscle or liver) interacts with the type of diet to determine changes in disposition index after 2 years of intervention: the CORDIOPREV-DIAB randomised clinical trial. Diabetologia. 2016;59:67−76.
pubmed: 26474775 doi: 10.1007/s00125-015-3776-4
Otten J, Stomby A, Waling M, Isaksson A, Soderstrom I, Ryberg M, et al. A heterogeneous response of liver and skeletal muscle fat to the combination of a Paleolithic diet and exercise in obese individuals with type 2 diabetes: a randomised controlled trial. Diabetologia. 2018;61:1548–59.
pubmed: 29696296 pmcid: 6445456 doi: 10.1007/s00125-018-4618-y
Klein MS, Shearer J. Metabolomics and type 2 diabetes: translating basic research into clinical application. J Diabetes Res. 2016;2016:3898502.
pubmed: 26636104 doi: 10.1155/2016/3898502
Pallares-Mendez R, Aguilar-Salinas CA, Cruz-Bautista I, Del Bosque-Plata L. Metabolomics in diabetes, a review. Ann Med. 2016;48:89–102.
pubmed: 26883715 doi: 10.3109/07853890.2015.1137630
Palmer ND, Okut H, Hsu FC, Ng MCY, Chen YI, Goodarzi MO, et al. Metabolomics identifies distinctive metabolite signatures for measures of glucose homeostasis: the Insulin Resistance Atherosclerosis Family Study (IRAS-FS). J Clin Endocrinol Metab. 2018;103:1877–88.
pubmed: 29546329 pmcid: 6456957 doi: 10.1210/jc.2017-02203
van der Kolk BW, Vogelzangs N, Jocken JWE, Valsesia A, Hankemeier T, Astrup A, et al. Plasma lipid profiling of tissue-specific insulin resistance in human obesity. Int J Obes. 2019;43:989−98.
Larsen TM, Dalskov S, van Baak M, Jebb S, Kafatos A, Pfeiffer A, et al. The diet, obesity and genes (diogenes) dietary study in eight European countries—a comprehensive design for long-term intervention. Obes Rev. 2010;11:76–91.
pubmed: 19470086 doi: 10.1111/j.1467-789X.2009.00603.x
Schram MT, Sep SJ, van der Kallen CJ, Dagnelie PC, Koster A, Schaper N, et al. The Maastricht Study: an extensive phenotyping study on determinants of type 2 diabetes, its complications and its comorbidities. Eur J Epidemiol. 2014;29:439–51.
pubmed: 24756374 doi: 10.1007/s10654-014-9889-0
Abdul-Ghani MA, Matsuda M, Balas B, DeFronzo RA. Muscle and liver insulin resistance indexes derived from the oral glucose tolerance test. Diabetes Care. 2007;30:89–94.
pubmed: 17192339 doi: 10.2337/dc06-1519
Wurtz P, Kangas AJ, Soininen P, Lawlor DA, Davey Smith G, Ala-Korpela M. Quantitative serum nuclear magnetic resonance metabolomics in large-scale epidemiology: a primer on -omic technologies. Am J Epidemiol. 2017;186:1084–96.
pubmed: 29106475 pmcid: 5860146 doi: 10.1093/aje/kwx016
Laffel L. Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res Rev. 1999;15:412–26.
pubmed: 10634967 doi: 10.1002/(SICI)1520-7560(199911/12)15:6<412::AID-DMRR72>3.0.CO;2-8
Soeters MR, Sauerwein HP, Faas L, Smeenge M, Duran M, Wanders RJ, et al. Effects of insulin on ketogenesis following fasting in lean and obese men. Obesity. 2009;17:1326–31.
pubmed: 19369940
Cobb J, Eckhart A, Perichon R, Wulff J, Mitchell M, Adam KP, et al. A novel test for IGT utilizing metabolite markers of glucose tolerance. J Diabetes Sci Technol. 2015;9:69–76.
pubmed: 25261439 doi: 10.1177/1932296814553622
Suhre K, Meisinger C, Doring A, Altmaier E, Belcredi P, Gieger C, et al. Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS One. 2010;5:e13953.
pubmed: 21085649 pmcid: 2978704 doi: 10.1371/journal.pone.0013953
Wurtz P, Makinen VP, Soininen P, Kangas AJ, Tukiainen T, Kettunen J, et al. Metabolic signatures of insulin resistance in 7098 young adults. Diabetes. 2012;61:1372–80.
pubmed: 22511205 pmcid: 3357275 doi: 10.2337/db11-1355
Vice E, Privette JD, Hickner RC, Barakat HA. Ketone body metabolism in lean and obese women. Metabolism. 2005;54:1542–5.
pubmed: 16253646 doi: 10.1016/j.metabol.2005.05.023
Mahendran Y, Vangipurapu J, Cederberg H, Stancakova A, Pihlajamaki J, Soininen P, et al. Association of ketone body levels with hyperglycemia and type 2 diabetes in 9398 Finnish men. Diabetes. 2013;62:3618–26.
pubmed: 23557707 pmcid: 3781437 doi: 10.2337/db12-1363
Pietilainen KH, Naukkarinen J, Rissanen A, Saharinen J, Ellonen P, Keranen H, et al. Global transcript profiles of fat in monozygotic twins discordant for BMI: pathways behind acquired obesity. PLoS Med. 2008;5:e51.
pubmed: 18336063 pmcid: 2265758 doi: 10.1371/journal.pmed.0050051
Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9:311–26.
pubmed: 19356713 pmcid: 3640280 doi: 10.1016/j.cmet.2009.02.002
Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17:448–53.
pubmed: 21423183 pmcid: 3126616 doi: 10.1038/nm.2307
Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BA, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535:376–81.
pubmed: 27409811 doi: 10.1038/nature18646
Mardinoglu A, Gogg S, Lotta LA, Stancakova A, Nerstedt A, Boren J, et al. Elevated plasma levels of 3-hydroxyisobutyric acid are associated with incident type 2 diabetes. EBioMedicine. 2018;27:151–5.
pubmed: 29246479 doi: 10.1016/j.ebiom.2017.12.008
Giesbertz P, Daniel H. Branched-chain amino acids as biomarkers in diabetes. Curr Opin Clin Nutr Metab Care. 2016;19:48–54.
pubmed: 26485337 doi: 10.1097/MCO.0000000000000235
Herman MA, She P, Peroni OD, Lynch CJ, Kahn BB. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels. J Biol Chem. 2010;285:11348–56.
pubmed: 20093359 pmcid: 2857013 doi: 10.1074/jbc.M109.075184
Lackey DE, Lynch CJ, Olson KC, Mostaedi R, Ali M, Smith WH, et al. Regulation of adipose branched-chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity. Am J Physiol Endocrinol Metab. 2013;304:E1175–87.
pubmed: 23512805 pmcid: 3680678 doi: 10.1152/ajpendo.00630.2012
She P, Van Horn C, Reid T, Hutson SM, Cooney RN, Lynch CJ. Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. Am J Physiol Endocrinol Metab. 2007;293:E1552–63.
pubmed: 17925455 pmcid: 2767201 doi: 10.1152/ajpendo.00134.2007
Shimomura Y, Obayashi M, Murakami T, Harris RA. Regulation of branched-chain amino acid catabolism: nutritional and hormonal regulation of activity and expression of the branched-chain alpha-keto acid dehydrogenase kinase. Curr Opin Clin Nutr Metab Care. 2001;4:419–23.
pubmed: 11568504 doi: 10.1097/00075197-200109000-00013
Burrill JS, Long EK, Reilly B, Deng Y, Armitage IM, Scherer PE, et al. Inflammation and ER stress regulate branched-chain amino acid uptake and metabolism in adipocytes. Mol Endocrinol. 2015;29:411–20.
pubmed: 25635940 pmcid: 4347289 doi: 10.1210/me.2014-1275
Badoud F, Lam KP, DiBattista A, Perreault M, Zulyniak MA, Cattrysse B, et al. Serum and adipose tissue amino acid homeostasis in the metabolically healthy obese. J Proteome Res. 2014;13:3455–66.
pubmed: 24933025 doi: 10.1021/pr500416v
Saad MJ, Santos A, Prada PO. Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology. 2016;31:283–93.
pubmed: 27252163 doi: 10.1152/physiol.00041.2015
Wurtz P, Soininen P, Kangas AJ, Ronnemaa T, Lehtimaki T, Kahonen M, et al. Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care. 2013;36:648–55.
pubmed: 23129134 pmcid: 3579331 doi: 10.2337/dc12-0895
Seibert R, Abbasi F, Hantash FM, Caulfield MP, Reaven G, Kim SH. Relationship between insulin resistance and amino acids in women and men. Physiol Rep. 2015;3:5.
doi: 10.14814/phy2.12392
Adeva-Andany M, Souto-Adeva G, Ameneiros-Rodriguez E, Fernandez-Fernandez C, Donapetry-Garcia C, Dominguez-Montero A. Insulin resistance and glycine metabolism in humans. Amino Acids. 2018;50:11–27.
pubmed: 29094215 doi: 10.1007/s00726-017-2508-0
Floegel A, Stefan N, Yu Z, Muhlenbruch K, Drogan D, Joost HG, et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes. 2013;62:639–48.
pubmed: 23043162 pmcid: 3554384 doi: 10.2337/db12-0495
Sparks JD, Sparks CE, Adeli K. Selective hepatic insulin resistance, VLDL overproduction, and hypertriglyceridemia. Arterioscler Thromb Vasc Biol. 2012;32:2104–12.
pubmed: 22796579 doi: 10.1161/ATVBAHA.111.241463
Magkos F, Patterson BW, Mohammed BS, Klein S, Mittendorfer B. Women produce fewer but triglyceride-richer very low-density lipoproteins than men. J Clin Endocrinol Metab. 2007;92:1311–8.
pubmed: 17264179 doi: 10.1210/jc.2006-2215
Wang X, Magkos F, Mittendorfer B. Sex differences in lipid and lipoprotein metabolism: it’s not just about sex hormones. J Clin Endocrinol Metab. 2011;96:885–93.
pubmed: 21474685 pmcid: 3070248 doi: 10.1210/jc.2010-2061
Muniyappa R, Tella SH, Sortur S, Mszar R, Grewal S, Abel BS, et al. Predictive accuracy of surrogate indices for hepatic and skeletal muscle insulin sensitivity. J Endocr Soc. 2019;3:108–18.
pubmed: 30675598 doi: 10.1210/js.2018-00206

Auteurs

Nicole Vogelzangs (N)

Department of Epidemiology, Maastricht University, Maastricht, The Netherlands. n.vogelzangs@maastrichtuniversity.nl.
Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands. n.vogelzangs@maastrichtuniversity.nl.
CARIM School for Cardiovascular Diseases, Maastricht University & Maastricht University Medical Centre, Maastricht, The Netherlands. n.vogelzangs@maastrichtuniversity.nl.

Carla J H van der Kallen (CJH)

CARIM School for Cardiovascular Diseases, Maastricht University & Maastricht University Medical Centre, Maastricht, The Netherlands.
Department of Internal Medicine, Maastricht University, Maastricht, The Netherlands.

Marleen M J van Greevenbroek (MMJ)

CARIM School for Cardiovascular Diseases, Maastricht University & Maastricht University Medical Centre, Maastricht, The Netherlands.
Department of Internal Medicine, Maastricht University, Maastricht, The Netherlands.

Birgitta W van der Kolk (BW)

Department of Human Biology, Maastricht University, Maastricht, The Netherlands.
NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.

Johan W E Jocken (JWE)

Department of Human Biology, Maastricht University, Maastricht, The Netherlands.
NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.

Gijs H Goossens (GH)

Department of Human Biology, Maastricht University, Maastricht, The Netherlands.
NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.

Nicolaas C Schaper (NC)

CARIM School for Cardiovascular Diseases, Maastricht University & Maastricht University Medical Centre, Maastricht, The Netherlands.
Department of Internal Medicine, Maastricht University, Maastricht, The Netherlands.

Ronald M A Henry (RMA)

CARIM School for Cardiovascular Diseases, Maastricht University & Maastricht University Medical Centre, Maastricht, The Netherlands.
Department of Internal Medicine, Maastricht University, Maastricht, The Netherlands.

Simone J P M Eussen (SJPM)

Department of Epidemiology, Maastricht University, Maastricht, The Netherlands.
CARIM School for Cardiovascular Diseases, Maastricht University & Maastricht University Medical Centre, Maastricht, The Netherlands.
CAPHRI School for Care and Public Health Research, Maastricht University, Maastricht, The Netherlands.

Armand Valsesia (A)

Nestlé Institute of Health Sciences, Lausanne, Switzerland.

Thomas Hankemeier (T)

Netherlands Metabolomics Centre, Leiden, The Netherlands.

Arne Astrup (A)

Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.

Wim H M Saris (WHM)

Department of Human Biology, Maastricht University, Maastricht, The Netherlands.
NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.

Coen D A Stehouwer (CDA)

CARIM School for Cardiovascular Diseases, Maastricht University & Maastricht University Medical Centre, Maastricht, The Netherlands.
Department of Internal Medicine, Maastricht University, Maastricht, The Netherlands.

Ellen E Blaak (EE)

Department of Human Biology, Maastricht University, Maastricht, The Netherlands.
NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.

Ilja C W Arts (ICW)

Department of Epidemiology, Maastricht University, Maastricht, The Netherlands.
Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands.
CARIM School for Cardiovascular Diseases, Maastricht University & Maastricht University Medical Centre, Maastricht, The Netherlands.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH