Fish Macrophages Show Distinct Metabolic Signatures Upon Polarization.
Animals
Arginase
/ metabolism
Carboxy-Lyases
/ genetics
Carps
/ immunology
Cell Polarity
/ drug effects
Cyclic AMP
/ pharmacology
Gene Expression
/ drug effects
Glycolysis
/ drug effects
Head Kidney
/ cytology
Lipopolysaccharides
/ pharmacology
Macrophage Activation
/ drug effects
Macrophages
/ immunology
Mitochondria
/ metabolism
Nitric Oxide
/ metabolism
Oxidative Phosphorylation
/ drug effects
Phenotype
Transcriptome
M1 M2 macrophage polarization
Seahorse
extracellular flux analysis
glycolysis
metabolic reprogramming
oxidative metabolism
oxidative phosphorylation (OXPHOS)
teleost
Journal
Frontiers in immunology
ISSN: 1664-3224
Titre abrégé: Front Immunol
Pays: Switzerland
ID NLM: 101560960
Informations de publication
Date de publication:
2020
2020
Historique:
received:
02
12
2019
accepted:
21
01
2020
entrez:
12
3
2020
pubmed:
12
3
2020
medline:
9
3
2021
Statut:
epublish
Résumé
Macrophages play important roles in conditions ranging from host immune defense to tissue regeneration and polarize their functional phenotype accordingly. Next to differences in the use of L-arginine and the production of different cytokines, inflammatory M1 macrophages and anti-inflammatory M2 macrophages are also metabolically distinct. In mammals, M1 macrophages show metabolic reprogramming toward glycolysis, while M2 macrophages rely on oxidative phosphorylation to generate energy. The presence of polarized functional immune phenotypes conserved from mammals to fish led us to hypothesize that a similar metabolic reprogramming in polarized macrophages exists in carp. We studied mitochondrial function of M1 and M2 carp macrophages under basal and stressed conditions to determine oxidative capacity by real-time measurements of oxygen consumption and glycolytic capacity by measuring lactate-based acidification. In M1 macrophages, we found increased nitric oxide production and
Identifiants
pubmed: 32158446
doi: 10.3389/fimmu.2020.00152
pmc: PMC7052297
doi:
Substances chimiques
Lipopolysaccharides
0
Nitric Oxide
31C4KY9ESH
Cyclic AMP
E0399OZS9N
Arginase
EC 3.5.3.1
Carboxy-Lyases
EC 4.1.1.-
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
152Informations de copyright
Copyright © 2020 Wentzel, Janssen, de Boer, van Veen, Forlenza and Wiegertjes.
Références
Genome Biol. 2014;15(12):550
pubmed: 25516281
J Exp Med. 2016 Aug 22;213(9):1655-62
pubmed: 27481132
Redox Biol. 2019 Apr;22:101147
pubmed: 30825774
J Immunol. 2000 Jun 15;164(12):6166-73
pubmed: 10843666
Cell Rep. 2016 Oct 11;17(3):684-696
pubmed: 27732846
Curr Top Microbiol Immunol. 2000;248:67-107
pubmed: 10793475
J Immunol. 2019 Jan 15;202(2):494-502
pubmed: 30552162
Curr Opin Immunol. 1991 Feb;3(1):65-70
pubmed: 1711326
PLoS Pathog. 2013;9(12):e1003789
pubmed: 24367256
Dev Comp Immunol. 2011 Dec;35(12):1246-55
pubmed: 21414343
J Immunol. 2015 Jan 1;194(1):187-99
pubmed: 25416810
Mol Immunol. 2016 Jan;69:146-56
pubmed: 26471699
Nature. 2013 Apr 11;496(7444):238-42
pubmed: 23535595
J Immunol. 2006 Jul 1;177(1):61-9
pubmed: 16785499
Parasitology. 2002 Jan;124(Pt 1):77-86
pubmed: 11817378
J Exp Biol. 2011 Jan 15;214(Pt 2):275-85
pubmed: 21177947
mBio. 2011 Sep 06;2(5):
pubmed: 21896680
Fish Shellfish Immunol. 2015 Feb;42(2):473-82
pubmed: 25453727
Nat Rev Immunol. 2019 May;19(5):273-281
pubmed: 30705422
Fish Shellfish Immunol. 2010 Nov;29(5):793-802
pubmed: 20633651
J Vis Exp. 2015 Nov 28;(105):
pubmed: 26649578
Immunogenetics. 2000 Apr;51(4-5):339-46
pubmed: 10803847
Trends Immunol. 2017 Jun;38(6):395-406
pubmed: 28396078
Immunity. 2014 Feb 20;40(2):274-88
pubmed: 24530056
Front Immunol. 2019 Feb 26;10:280
pubmed: 30863400
Nat Rev Immunol. 2016 Sep;16(9):553-65
pubmed: 27396447
Dev Comp Immunol. 2017 Feb;67:377-384
pubmed: 27581741
BMC Genomics. 2016 Sep 02;17:701
pubmed: 27590662