Aurora B kinase as a therapeutic target in acute lymphoblastic leukemia.
Antineoplastic Combined Chemotherapy Protocols
/ pharmacology
Aurora Kinase A
/ antagonists & inhibitors
Cell Cycle
Cell Proliferation
Docetaxel
/ administration & dosage
Drug Therapy, Combination
Furans
/ administration & dosage
High-Throughput Screening Assays
Humans
Ketones
/ administration & dosage
Phosphorylation
Precursor Cell Lymphoblastic Leukemia-Lymphoma
/ drug therapy
Prognosis
Quinazolines
/ pharmacology
Tumor Cells, Cultured
Vincristine
/ administration & dosage
Acute lymphoblastic leukemia
Aurora B kinase
Barasertib
In vitro drug sensitivity test
Survivin
Journal
Cancer chemotherapy and pharmacology
ISSN: 1432-0843
Titre abrégé: Cancer Chemother Pharmacol
Pays: Germany
ID NLM: 7806519
Informations de publication
Date de publication:
04 2020
04 2020
Historique:
received:
13
09
2019
accepted:
19
02
2020
pubmed:
8
3
2020
medline:
18
11
2020
entrez:
8
3
2020
Statut:
ppublish
Résumé
Acute lymphoblastic leukemia (ALL) is curable with standardized chemotherapy. However, the development of novel therapies is still required, especially for patients with relapsed or refractory disease. By utilizing an in vitro drug screening system, active molecular targeting agents against ALL were explored in this study. By the in vitro drug sensitivity test, 81 agents with various actions were screened for their cytotoxicity in a panel of 22 ALL cell lines and ALL clinical samples. The drug effect score (DES) was calculated from the dose-response of each drug for comparison among drugs or samples. Normal peripheral blood mononuclear cells were also applied onto the drug screening to provide the reference control values. The drug combination effect was screened based on the Bliss independent model, and validated by the improved isobologram method. On sensitivity screening in a cell line panel, barasertib-HQPA which is an active metabolite of barasertib, an aurora B kinase inhibitor, alisertib, an aurora A kinase inhibitor, and YM155, a survivin inhibitor, were effective against the broadest range of ALL cells. The DES of barasertib-HQPA was significantly higher in ALL clinical samples compared to the reference value. There were significant correlations in DES between barasertib-HQPA and vincristine or docetaxel. In the drug combination assay, barasertib-HQPA and eribulin showed additive to synergistic effects. Aurora B kinase was identified to be an active therapeutic target in a broad range of ALL cells. Combination therapy of barasertib and a microtubule-targeting drug is of clinical interest.
Identifiants
pubmed: 32144432
doi: 10.1007/s00280-020-04045-9
pii: 10.1007/s00280-020-04045-9
doi:
Substances chimiques
Furans
0
Ketones
0
Quinazolines
0
Docetaxel
15H5577CQD
AZD 1152-HQPA
29P8LWS24N
Vincristine
5J49Q6B70F
AURKA protein, human
EC 2.7.11.1
Aurora Kinase A
EC 2.7.11.1
eribulin
LR24G6354G
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
773-783Commentaires et corrections
Type : ErratumIn
Références
Kato M, Manabe A (2018) Treatment and biology of pediatric acute lymphoblastic leukemia. Pediatr Int 60:4–12. https://doi.org/10.1111/ped.13457
doi: 10.1111/ped.13457
pubmed: 29143423
Siegel SE, Advani A, Seibel N, Muffly L, Stock W, Luger S, Shah B, DeAngelo DJ, Freyer DR, Douer D, Johnson RH, Hayes-Lattin B, Lewis M, Jaboin JJ, Coccia PF, Bleyer A (2018) Treatment of young adults with Philadelphia-negative acute lymphoblastic leukemia and lymphoblastic lymphoma: Hyper-CVAD vs. pediatric-inspired regimens. Am J Hematol 93:1254–1266. https://doi.org/10.1002/ajh.25229
doi: 10.1002/ajh.25229
pubmed: 30058716
pmcid: 7521142
Huguet F, Chevret S, Leguay T, Thomas X, Boissel N, Escoffre-Barbe M, Chevallier P, Hunault M, Vey N, Bonmati C, Lepretre S, Marolleau JP, Pabst T, Rousselot P, Buzyn A, Cahn JY, Lhéritier V, Béné MC, Asnafi V, Delabesse E, Macintyre E, Chalandon Y, Ifrah N, Dombret H, Group of Research on Adult ALL (GRAALL) (2018) Intensified therapy of acute lymphoblastic leukemia in adults: report of the randomized GRAALL-2005 clinical trial. J Clin Oncol 36:2514–2523. https://doi.org/10.1200/JCO.2017.76.8192
doi: 10.1200/JCO.2017.76.8192
pubmed: 29863974
Goto H (2015) Childhood relapsed acute lymphoblastic leukemia: biology and recent treatment progress. Pediatr Int 57:1059–1066. https://doi.org/10.1111/ped.12837
doi: 10.1111/ped.12837
pubmed: 26455582
Mulrooney DA, Hyun G, Ness KK, Bhakta N, Pui CH, Ehrhardt MJ, Krull KR, Crom DB, Chemaitilly W, Srivastava DK, Relling MV, Jeha S, Green DM, Yasui Y, Robison LL, Hudson MM (2019) The changing burden of long-term health outcomes in survivors of childhood acute lymphoblastic leukaemia: a retrospective analysis of the St Jude Lifetime Cohort Study. Lancet Haematol 6:e306–e316. https://doi.org/10.1016/S2352-3026(19)30050-X
doi: 10.1016/S2352-3026(19)30050-X
pubmed: 31078468
pmcid: 6756152
Tomoyasu C, Imamura T, Tomii T, Yano M, Asai D, Goto H, Shimada A, Sanada M, Iwamoto S, Takita J, Minegishi M, Inukai T, Sugita K, Hosoi H (2018) Copy number abnormality of acute lymphoblastic leukemia cell lines based on their genetic subtypes. Int J Hematol 108:312–318. https://doi.org/10.1007/s12185-018-2474-7
doi: 10.1007/s12185-018-2474-7
pubmed: 29786757
Huang M, Inukai T, Miyake K, Tanaka Y, Kagami K, Abe M, Goto H, Minegishi M, Iwamoto S, Sugihara E, Watanabe A, Somazu S, Shinohara T, Oshiro H, Akahane K, Goi K, Sugita K (2018) Clofarabine exerts antileukemic activity against cytarabine-resistant B-cell precursor acute lymphoblastic leukemia with low deoxycytidine kinase expression. Cancer Med 7:1297–1316. https://doi.org/10.1002/cam4.1323
doi: 10.1002/cam4.1323
pubmed: 29473342
pmcid: 5911575
Takahashi K, Inukai T, Imamura T, Yano M, Tomoyasu C, Lucas DM, Nemoto A, Sato H, Huang M, Abe M, Kagami K, Shinohara T, Watanabe A, Somazu S, Oshiro H, Akahane K, Goi K, Kikuchi J, Furukawa Y, Goto H, Minegishi M, Iwamoto S, Sugita K (2017) Anti-leukemic activity of bortezomib and carfilzomib on B-cell precursor ALL cell lines. PLoS ONE 12:e0188680. https://doi.org/10.1371/journal.pone.0188680
doi: 10.1371/journal.pone.0188680
pubmed: 29236701
pmcid: 5728482
Dida F, Li Y, Iwao A, Deguchi T, Azuma E, Komada Y (2008) Resistance to TRAIL-induced apoptosis caused by constitutional phosphorylation of Akt and PTEN in acute lymphoblastic leukemia cells. Exp Hematol 36:1343–1353. https://doi.org/10.1016/j.exphem.2008.04.011
doi: 10.1016/j.exphem.2008.04.011
pubmed: 18599181
Szulkin A, Otvös R, Hillerdal CO, Celep A, Yousef-Fadhel E, Skribek H, Hjerpe A, Székely L, Dobra K (2014) Characterization and drug sensitivity profiling of primary malignant mesothelioma cells from pleural effusions. BMC Cancer 14:709. https://doi.org/10.1186/1471-2407-14-709
doi: 10.1186/1471-2407-14-709
pubmed: 25253633
pmcid: 4190467
Goto S, Goto H, Yokosuka T (2016) The combination effects of bendamustine with antimetabolites against childhood acute lymphoblastic leukemia cells. Int J Hematol 103:572–583. https://doi.org/10.1007/s12185-016-1952-z
doi: 10.1007/s12185-016-1952-z
pubmed: 26886449
Goto H, Yanagimachi M, Goto S, Takeuchi M, Kato H, Yokosuka T, Kajiwara R, Yokota S (2012) Methylated chrysin reduced cell proliferation, but antagonized cytotoxicity of other anticancer drugs in acute lymphoblastic leukemia. Anticancer Drugs 23:417–425. https://doi.org/10.1097/CAD.0b013e32834fb731
doi: 10.1097/CAD.0b013e32834fb731
pubmed: 22205153
Yokosuka T, Goto H, Fujii H, Naruto T, Takeuchi M, Tanoshima R, Kato H, Yanagimachi M, Kajiwara R, Yokota S (2013) Flow cytometric chemosensitivity assay using JC-1, a sensor of mitochondrial transmembrane potential, in acute leukemia. Cancer Chemother Pharmacol 72:1335–1342
doi: 10.1007/s00280-013-2303-x
Tsuda Y, Iimori M, Nakashima Y, Nakanishi R, Ando K, Ohgaki K, Kitao H, Saeki H, Oki E, Maehara Y (2017) Mitotic slippage and the subsequent cell fates after inhibition of Aurora B during tubulin-binding agent-induced mitotic arrest. Sci Rep 7:16762. https://doi.org/10.1038/s41598-017-17002-z
doi: 10.1038/s41598-017-17002-z
pubmed: 29196757
pmcid: 5711930
Kantarjian HM, Sekeres MA, Ribrag V, Rousselot P, Garcia-Manero G, Jabbour EJ, Owen K, Stockman PK, Oliver SD (2013) Phase I study assessing the safety and tolerability of barasertib (AZD1152) with low-dose cytosine arabinoside in elderly patients with AML. Clin Lymphoma Myeloma Leuk 13:559–567. https://doi.org/10.1016/j.clml.2013.03.019
doi: 10.1016/j.clml.2013.03.019
pubmed: 23763917
pmcid: 3775947
Zekri A, Mesbahi Y, Ghanizadeh-Vesali S, Alimoghaddam K, Ghavamzadeh A, Ghaffari SH (2017) Reactive oxygen species generation and increase in mitochondrial copy number: new insight into the potential mechanism of cytotoxicity induced by aurora kinase inhibitor, AZD1152-HQPA. Anticancer Drugs 28:841–851
doi: 10.1097/CAD.0000000000000523
Zhelev Z, Ivanova D, Lazarova D, Aoki I, Bakalova R, Saga T (2016) Docosahexaenoic acid sensitizes leukemia lymphocytes to barasertib and everolimus by ROS-dependent mechanism without affecting the level of ROS and viability of normal lymphocytes. Anticancer Res 36:1673–1682
doi: 10.21873/anticanres.11190
Ivanova D, Zhelev Z, Lazarova D, Getsov P, Bakalova R, Aoki I (2018) Vitamins C and K3: a powerful redox system for sensitizing leukemia lymphocytes to everolimus and barasertib. Anticancer Res 38:1407–1414
pubmed: 29491065
Jacoby E, Shahani SA, Shah NN (2019) Updates on CAR T-cell therapy in B-cell malignancies. Immunol Rev 290:39–59. https://doi.org/10.1111/imr.12774
doi: 10.1111/imr.12774
pubmed: 31355492
Paul S, Rausch CR, Nasnas PE, Kantarjian H, Jabbour EJ (2019) Treatment of relapsed/refractory acute lymphoblastic leukemia. Clin Adv Hematol Oncol 17:166–175
pubmed: 30969955
Matheson EC, Thomas H, Case M, Blair H, Jackson RK, Masic D, Veal G, Halsey C, Newell DR, Vormoor J, Irving JAE (2019) Glucocorticoids and selumetinib are highly synergistic in RAS pathway mutated childhood acute lymphoblastic leukemia through upregulation of BIM. Haematologica pii: haematol.2017.185975.
Kerstjens M, Pinhancos SS, Castro PG, Schneider P, Wander P, Pieters R, Stam RW (2018) Trametinib inhibits RAS-mutant MLL-rearranged acute lymphoblastic leukemia at specific niche sites and reduces ERK phosphorylation in vivo. Haematologica 103:e147–e150. https://doi.org/10.3324/haematol.2017.174060
doi: 10.3324/haematol.2017.174060
pubmed: 29419436
pmcid: 5865421
Place AE, Pikman Y, Stevenson KE, Harris MH, Pauly M, Sulis ML, Hijiya N, Gore L, Cooper TM, Loh ML, Roti G, Neuberg DS, Hunt SK, Orloff-Parry S, Stegmaier K, Sallan SE, Silverman LB (2018) Phase I trial of the mTOR inhibitor everolimus in combination with multi-agent chemotherapy in relapsed childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 65:e27062. https://doi.org/10.1002/pbc.27062
doi: 10.1002/pbc.27062
pubmed: 29603593
Ding YY, Stern JW, Jubelirer TF, Wertheim GB, Lin F, Chang F, Gu Z, Mullighan CG, Li Y, Harvey RC, Chen IM, Willman CL, Hunger SP, Li MM, Tasian SK (2018) Clinical efficacy of ruxolitinib and chemotherapy in a child with Philadelphia chromosome-like acute lymphoblastic leukemia with GOLGA5-JAK2 fusion and induction failure. Haematologica 103:e427–e431. https://doi.org/10.3324/haematol.2018.192088
doi: 10.3324/haematol.2018.192088
pubmed: 29773603
pmcid: 6119161
Waibel M, Vervoort SJ, Kong IY, Heinzel S, Ramsbottom KM, Martin BP, Hawkins ED, Johnstone RW (2018) Epigenetic targeting of Notch1-driven transcription using the HDACi panobinostat is a potential therapy against T-cell acute lymphoblastic leukemia. Leukemia 32:237–241. https://doi.org/10.1038/leu.2017.282
doi: 10.1038/leu.2017.282
pubmed: 28914259
Garrido Castro P, van Roon EHJ, Pinhanços SS, Trentin L, Schneider P, Kerstjens M, Te Kronnie G, Heidenreich O, Pieters R, Stam RW (2018) The HDAC inhibitor panobinostat (LBH589) exerts in vivo anti-leukaemic activity against MLL-rearranged acute lymphoblastic leukaemia and involves the RNF20/RNF40/WAC-H2B ubiquitination axis. Leukemia 32:323–331. https://doi.org/10.1038/leu.2017.216
doi: 10.1038/leu.2017.216
pubmed: 28690313
Hartsink-Segers SA, Zwaan CM, Exalto C, Luijendijk MW, Calvert VS, Petricoin EF, Evans WE, Reinhardt D, de Haas V, Hedtjärn M, Hansen BR, Koch T, Caron HN, Pieters R, Den Boer ML (2013) Aurora kinases in childhood acute leukemia: the promise of aurora B as therapeutic target. Leukemia 27:560–568. https://doi.org/10.1038/leu.2012.256
doi: 10.1038/leu.2012.256
pubmed: 22940834
Bertran-Alamillo J, Cattan V, Schoumacher M, Codony-Servat J, Giménez-Capitán A, Cantero F, Burbridge M, Rodríguez S, Teixidó C, Roman R, Castellví J, García-Román S, Codony-Servat C, Viteri S, Cardona AF, Karachaliou N, Rosell R, Molina-Vila MA (2019) AURKB as a target in non-small cell lung cancer with acquired resistance to anti-EGFR therapy. Nat Commun 10:1812. https://doi.org/10.1038/s41467-019-09734-5
doi: 10.1038/s41467-019-09734-5
pubmed: 31000705
pmcid: 6472415
Floc'h N, Ashton S, Ferguson D, Taylor P, Carnevalli LS, Hughes AM, Harris E, Hattersley M, Wen S, Curtis NJ, Pilling JE, Young LA, Maratea K, Pease EJ, Barry ST (2019) Modeling dose and schedule effects of AZD2811 nanoparticles targeting aurora b kinase for treatment of diffuse large B-cell lymphoma. Mol Cancer Ther 18:909–919. https://doi.org/10.1158/1535-7163.MCT-18-0577
doi: 10.1158/1535-7163.MCT-18-0577
pubmed: 30872381
He J, Qi Z, Zhang X, Yang Y, Liu F, Zhao G, Wang Z (2019) Aurora kinase B inhibitor barasertib (AZD1152) inhibits glucose metabolism in gastric cancer cells. Anticancer Drugs 30:19–26. https://doi.org/10.1097/CAD.0000000000000684
doi: 10.1097/CAD.0000000000000684
pubmed: 30540594
Hole S, Pedersen AM, Lykkesfeldt AE, Yde CW (2015) Aurora kinase A and B as new treatment targets in aromatase inhibitor-resistant breast cancer cells. Breast Cancer Res Treat 149:715–726. https://doi.org/10.1007/s10549-015-3284-8
doi: 10.1007/s10549-015-3284-8
pubmed: 25667100
Tang A, Gao K, Chu L, Zhang R, Yang J, Zheng J (2017) Aurora kinases: novel therapy targets in cancers. Oncotarget 8:23937–23954. https://doi.org/10.18632/oncotarget
doi: 10.18632/oncotarget
pubmed: 28147341
pmcid: 5410356
Willems E, Dedobbeleer M, Digregorio M, Lombard A, Lumapat PN, Rogister B (2018) The functional diversity of Aurora kinases: a comprehensive review. Cell Div 13:7. https://doi.org/10.1186/s13008-018-0040-6
doi: 10.1186/s13008-018-0040-6
pubmed: 30250494
pmcid: 6146527
Manfredi MG, Ecsedy JA, Chakravarty A, Silverman L, Zhang M, Hoar KM, Stroud SG, Chen W, Shinde V, Huck JJ, Wysong DR, Janowick DA, Hyer ML, Leroy PJ, Gershman RE, Silva MD, Germanos MS, Bolen JB, Claiborne CF, Sells TB (2011) Characterization of alisertib (MLN8237), an investigational small-molecule inhibitor of aurora A kinase using novel in vivo pharmacodynamic assays. Clin Cancer Res 17:7614–7624
doi: 10.1158/1078-0432.CCR-11-1536
Ksionda O, Mues M, Wandler AM, Donker L, Tenhagen M, Jun J, Ducker GS, Matlawska-Wasowska K, Shannon K, Shokat KM, Roose JP (2018) Comprehensive analysis of T cell leukemia signals reveals heterogeneity in the PI3 kinase-Akt pathway and limitations of PI3 kinase inhibitors as monotherapy. PLoS ONE 13:e0193849. https://doi.org/10.1371/journal.pone.0193849
doi: 10.1371/journal.pone.0193849
pubmed: 29799846
pmcid: 5969748
Ampatzidou M, Papadhimitriou SI, Paterakis G, Pavlidis D, Tsitsikas Κ, Kostopoulos IV, Papadakis V, Vassilopoulos G, Polychronopoulou S (2018) ETV6/RUNX1-positive childhood acute lymphoblastic leukemia (ALL): The spectrum of clonal heterogeneity and its impact on prognosis. Cancer Genet 224–225:1–11. https://doi.org/10.1016/j.cancergen.2018.03.001
doi: 10.1016/j.cancergen.2018.03.001
pubmed: 29778230
Yang J, Ikezoe T, Nishioka C, Tasaka T, Taniguchi A, Kuwayama Y, Komatsu N, Bandobashi K, Togitani K, Koeffler HP, Taguchi H, Yokoyama A (2007) AZD1152, a novel and selective aurora B kinase inhibitor, induces growth arrest, apoptosis, and sensitization for tubulin depolymerizing agent or topoisomerase II inhibitor in human acute leukemia cells in vitro and in vivo. Blood 110:2034–2040
doi: 10.1182/blood-2007-02-073700
Collins GP, Eyre TA, Linton KM, Radford J, Vallance GD, Soilleux E, Hatton C (2015) A phase II trial of AZD1152 in relapsed/refractory diffuse large B-cell lymphoma. Br J Haematol 170:886–890. https://doi.org/10.1111/bjh.13333
doi: 10.1111/bjh.13333
pubmed: 25721307
Schwartz GK, Carvajal RD, Midgley R, Rodig SJ, Stockman PK, Ataman O, Wilson D, Das S, Shapiro GI (2013) Phase I study of barasertib (AZD1152), a selective inhibitor of Aurora B kinase, in patients with advanced solid tumors. Invest New Drugs 31:370–380. https://doi.org/10.1007/s10637-012-9825-7
doi: 10.1007/s10637-012-9825-7
pubmed: 22661287