Biological evaluation of zinc-containing calcium alginate-hydroxyapatite composite microspheres for bone regeneration.


Journal

Journal of biomedical materials research. Part B, Applied biomaterials
ISSN: 1552-4981
Titre abrégé: J Biomed Mater Res B Appl Biomater
Pays: United States
ID NLM: 101234238

Informations de publication

Date de publication:
08 2020
Historique:
received: 21 08 2019
revised: 31 01 2020
accepted: 11 02 2020
pubmed: 26 2 2020
medline: 6 11 2021
entrez: 26 2 2020
Statut: ppublish

Résumé

Zinc is an important element for bone structure and metabolism. Its interaction with hydroxyapatite has been investigated for the improvement of bone repair. The objective of this study was to evaluate the in vitro and in vivo biological response to nanostructured calcium alginate-hydroxyapatite (HA) and zinc-containing HA (ZnHA). Cytocompatibility was evaluated by applying PrestoBlue reagent after exposing murine pre-osteoblast cells to extracts of each biomaterial microspheres. After physical and chemical characterization, the biomaterial microspheres were implanted in a critical size calvaria defect (8 mm) in Wistar rats (n = 30) that were randomly divided into the HA and ZnHA groups. Tissue samples were evaluated through histological and histomorphometric analyses after 1, 3, and 6 months (n = 5). The results showed cellular viability for both groups compared to the negative control, and no differences in metabolic activity were observed. The HA group presented a significant reduction of biomaterial compared with the ZnHA group in all experimental periods; however, a considerable amount of new bone formation was observed surrounding the ZnHA spheres at the 6-month time point compared with the HA group (p < .05). Both biomaterials were biocompatible, and the combination of zinc with hydroxyapatite was shown to improve bone repair.

Identifiants

pubmed: 32096353
doi: 10.1002/jbm.b.34593
doi:

Substances chimiques

Alginates 0
Biocompatible Materials 0
Durapatite 91D9GV0Z28
Zinc J41CSQ7QDS

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2610-2620

Informations de copyright

© 2020 Wiley Periodicals, Inc.

Références

Bose, S., & Tarafder, T. (2012). Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review. Acta Biomaterialia, 8, 1401-1421.
Calasans-Maia, M., Calasans-Maia, J., Santos, S., Mavropoulos, E., Farina, M., Lima, I., … Granjeiro, J. M. (2014). Short-term in vivo evaluation of zinc-containing calcium phosphate using a normalized procedure. Materials Science & Engineering C Materials for Biological Applications, 41, 309-319.
Calasans-Maia, M., Fernandes, G. V. O., Rossi, A., Dias, E. P., Almeida, G. D. S., Mitri, F. F., & Granjeiro, J. M. (2008). Effect of hydroxyapatite and zinc-containing hydroxyapatite on osseous repair of critical size defect in the rat calvaria. Key Engineering Materials, 361-363, 1273-1276.
Cammack, G. V., Nevins, M., Clem, D. S., Hatch, J. P., & Mellonig, J. T. (2005). Histologic evaluation of mineralized and desmineralized freeze dried bone allograft for ridge and sinus augmentations. International Journal of Periodontics Restorative Dentistry, 25, 231-237.
Cruz, R., Calasans Maia, M., Calasans Maia, J., Sartoretto, S., Moraschini, V., Rossi, A., … Granjeiro, J. M. (2018). Does the incorporation of zinc into calcium phosphate improve bone repair? A systematic review. Ceramics International, 44, 1240-1249.
Cuozzo, R. C., DA Rocha Leão, M. H. M., De Andrade Gobbo, L., Da Rocha, D. N., Ayad, N. M. E., Trindade, W., … Prado Da Silva, M. H. (2014). Zinc alginate-hydroxyapatite composite microspheres for bone repair. Ceramics International, 40, 11369-11375.
Dasmah, A., Thor, A., Ekestubbe, A., Sennerby, L., & Rasmusson, L. (2012). Particulate vs. particulate vs. block bone grafts: Three-dimensional changes in graft volume after reconstruction of the atrophic maxilla, a 2-year radiographic follow-up. Journal of Cranio-Maxillo-Facial Surgery, 40, 654-659.
Fernandes, G. V. O., Calasans-Maia, M., Mitri, F. F., Bernardo, V. G., Rossi, A., Almeida, G. D. S., & Granjeiro, J. M. (2009). Histomorphometric analysis of bone repair in critical size defect in rats calvaria treated with hydroxyapatite and zinc-containing hydroxyapatite 5%. Key Engineering Materials, 396-398, 15-18.
Franceschi, R. T., & Iyer, B. S. (1992). Relationship between collagen synthesis and expression of the osteoblast phenotype in MC3T3-E1 cells. Journal of Bone and Mineral Research, 7, 235-246.
Gomes, P. S., & Fernandes, M. H. (2011). Rodent models in bone-related research: The relevance of calvarial defects in the assessment of bone regeneration strategies. Laboratory Animals, 45, 14-24.
Hashizume, M., & Yamaguchi, M. (1994). Effect of beta-alanyl-L-histidinato zinc on differentiation of osteoblastic MC3T3-E1 cells: Increases in alkaline phosphatase activity and protein concentration. Molecular and Cellular Biochemistry, 131, 19-24.
Holloway, W. R., Collier, F. M., Herbst, R. E., Hodge, J. M., & Nicholson, G. C. (1996). Osteoblast-mediated effects of zinc on isolated rat osteoclasts: Inhibition of bone resorption and enhancement of osteoclast number. Bone, 19, 137-142.
Ito, A., Kawamura, H., Miyakawa, S., Layrolle, P., Kanzaki, N., Treboux, G., … Tsutsumi, S. (2002). Resorbability and solubility of zinc-containing tricalcium phosphate. Journal of Biomedical Materials Research, 60, 224-231.
Kattimani, V. S., Kondaka, S., & Lingamaneni, K. P. (2016). Hydroxyapatite - past, present, and future in bone regeneration. Bone and Tissue Regeneration Insights, 7, 9-19.
Kawamura, H., Ito, A., Miyakawa, S., Layrolle, P., Ojima, K., Ichinose, N., & Tateishi, T. (2000). Stimulatory effect of zinc-releasing calcium phosphate implant on bone formation in rabbit femora. Journal of Biomedical Materials Research, 50, 184-190.
Kilkenny, C., Browne, W., Cuthill, I. C., Emerson, M., & Altman, D. G. (2010). Animal research: Reporting in vivo experiments: The ARRIVE guidelines. British Journal of Pharmacology, 160, 1577-1579.
Martinez-Zelaya, V., Zarranz, L., Herrera, E. Z., Alves, A. T., Uzeda, M. J., Mavropoulos, E., … Rossi, A. M. (2019). In vitro and in vivo evaluations of nanocrystalline Zn-doped carbonated hydroxyapatite/alginate microspheres: Zinc and calcium bioavailability and bone regeneration. International Journal of Nanomedicine, 14, 3471-3490.
Prolo, D. J., Gutierrez, R. V., DeVine, J. S., & Oklund, S. A. (1984). Clinical utility of allogeneic skull discs in human craniotomy. Neurosurgery, 14, 183-186.
Rahaman, M. N. (2003). Ceramic processing and sintering (2nd ed.). New York: Taylor Print on Dema.
Resende, R. F. B., Sartoretto, S. C., Uzeda, M. J., Alves, A. T. N. N., Calasans-Maia, J. A., Rossi, A. M., … Calasans-Maia, M. D. (2019). Randomized controlled clinical trial of nanostructured carbonated hydroxyapatite for alveolar bone repair. Materials, 12, 3645.
Sadat-Shojai, M., Khorasani, M. T., Dinpanah-Khoshdargi, E., & Jamshidi, A. (2013). Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomaterialia, 9, 7591-7621.
Samsonraj, R. M., Dudakovic, A., Zan, P., Pichurin, O., Cool, S. M., & van Wijnen, A. J. (2017). Versatile protocol for studying calvarial bone defect healing in a mouse model. Tissue Engineering: Part C, Methods, 23, 686-693.
Sartoretto, S. C., Gemini-Piperni, S., da Silva, R. A., Calasans, M. D., Rucci, N., dos Santos, T. M. P., … Zambuzzi, W. F. (2019). Apoptosis-associated speck-like protein containing a caspase-1 recruitment domain (ASC) contributes to osteoblast differentiation and osteogenesis. Journal of Cellular Physiology, 234, 4140-4153.
Schmitz, J. P., & Hollinger, J. O. (1986). The critical size defect as an experimental model for cranio-mandibulofacial nonunions. Clinical Orthopaedics Related Research, 205, 299-308.
Siddiqui, H. A., Pickering, K. L., & Mucalo, M. R. (2018). A review on the use of hydroxyapatite-carbonaceous-structure composites in bone replacement materials for strengthening purposes. Materials, 11, E1813.
Smith, A. J., Clutton, R. E., Lilley, E., Hansen, K. E. A., & Brattelid, T. (2018). PREPARE: Guidelines for planning animal research and testing. Laboratory Animals, 52, 135-141.
Suchanek, W., & Yoshimura, M. (1998). Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. Journal of Materials Reseach, 13, 94-117.
Tapiero, H., & Tew, K. D. (2003). Trace elements in human physiology and pathology: Zinc and metallothioneins. Biomedicine & Pharmacotherapy, 57, 399-411.
Vajgel, A., Mardas, N., Farias, B. C., Petrie, A., Cimões, R., & Donos, N. (2014). A systematic review on the critical size defect model. Clinical Oral Implants Research, 25, 879-893.
Valiense, H., Barreto, M., Resende, R. F., Alves, A. T., Rossi, A. M., Mavropoulos, E., … Calasans-Maia, M. D. (2016). In vitro and in vivo evaluation of strontiumcontaining nanostructured carbonated hydroxyapatite/sodium alginate for sinus lift in rabbits. Journal of Biomedical Materials Research Part B Applied Materials, 104, 274-282.
Yamaguchi, M., & Yamaguchi, R. (1986). Action of zinc on bone metabolism in rats: Increases in alkaline phosphatase activity and DNA content. Biochemical Pharmacology, 35, 773-777.
Zhang, Z., Yang, Y. P., & ONG, J. L. (2006). Nano-hydroxyapatite for biomedical applications. Bionanotechnology, 24, 24.

Auteurs

Renan C Cuozzo (RC)

Graduate Program in Dentistry, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil.

Suelen C Sartoretto (SC)

Oral Surgery Department, Universidade Veiga de Almeida, Rio de Janeiro, Rio de Janeiro, Brazil.
Oral Surgery Department, Universidade Iguaçu, Nova Iguaçu, Rio de Janeiro, Brazil.

Rodrigo F B Resende (RFB)

Oral Surgery Department, Universidade Iguaçu, Nova Iguaçu, Rio de Janeiro, Brazil.
Oral Surgery Department, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil.

Adriana Terezinha N N Alves (ATNN)

Oral Diagnosis Department, Universidade Federal Fluminense, Niteroi, Rio de Janeiro, Brazil.

Elena Mavropoulos (E)

Department of Condensed Matter, Applied Physics and Nanoscience, Brazilian Center for Research in Physics, Rio de Janeiro, Rio de Janeiro, Brazil.

Marcelo H Prado da Silva (MH)

Graduate Program in Materials Science, Instituto Militar de Engenharia, Rio de Janeiro, Rio de Janeiro, Brazil.

Mônica D Calasans-Maia (MD)

Oral Surgery Department, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH