LATS suppresses mTORC1 activity to directly coordinate Hippo and mTORC1 pathways in growth control.


Journal

Nature cell biology
ISSN: 1476-4679
Titre abrégé: Nat Cell Biol
Pays: England
ID NLM: 100890575

Informations de publication

Date de publication:
02 2020
Historique:
received: 08 11 2019
accepted: 06 01 2020
pubmed: 6 2 2020
medline: 16 4 2020
entrez: 5 2 2020
Statut: ppublish

Résumé

The Hippo and mammalian target of rapamycin complex 1 (mTORC1) pathways are the two predominant growth-control pathways that dictate proper organ development. We therefore explored potential crosstalk between these two functionally relevant pathways to coordinate their growth-control functions. We found that the LATS1 and LATS2 kinases, the core components of the Hippo pathway, phosphorylate S606 of Raptor, an essential component of mTORC1, to attenuate mTORC1 activation by impairing the interaction of Raptor with Rheb. The phosphomimetic Raptor-S606D knock-in mutant led to a reduction in cell size and proliferation. Compared with Raptor

Identifiants

pubmed: 32015438
doi: 10.1038/s41556-020-0463-6
pii: 10.1038/s41556-020-0463-6
pmc: PMC7076906
mid: NIHMS1548339
doi:

Substances chimiques

Neurofibromin 2 0
Ras Homolog Enriched in Brain Protein 0
Regulatory-Associated Protein of mTOR 0
Rheb protein, mouse 0
Rptor protein, mouse 0
Tumor Suppressor Proteins 0
Lats1 protein, mouse EC 2.7.1.-
LATS2 protein, mouse EC 2.7.11.1
Mechanistic Target of Rapamycin Complex 1 EC 2.7.11.1
Protein Serine-Threonine Kinases EC 2.7.11.1

Types de publication

Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

246-256

Subventions

Organisme : NCI NIH HHS
ID : R01 CA200651
Pays : United States
Organisme : NIDDK NIH HHS
ID : P30 DK123704
Pays : United States
Organisme : NCI NIH HHS
ID : R00 CA181342
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM094777
Pays : United States
Organisme : NIGMS NIH HHS
ID : P20 GM130457
Pays : United States
Organisme : NEI NIH HHS
ID : P30 EY012196
Pays : United States
Organisme : NCI NIH HHS
ID : R00 CA207867
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA222571
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA006516
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA016086
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM117150
Pays : United States
Organisme : NCI NIH HHS
ID : P01 CA120964
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA200573
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA177910
Pays : United States
Organisme : NICHD NIH HHS
ID : U54 HD090255
Pays : United States

Références

Conlon, I. & Raff, M. Size control in animal development. Cell 96, 235–244 (1999).
pubmed: 9988218
Dong, J. et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130, 1120–1133 (2007).
pubmed: 17889654 pmcid: 2666353
Wullschleger, S., Loewith, R. & Hall, M. N. TOR signaling in growth and metabolism. Cell 124, 471–484 (2006).
pubmed: 16469695 pmcid: 16469695
Pan, D. Hippo signaling in organ size control. Genes Dev. 21, 886–897 (2007).
pubmed: 17437995
Laplante, M. & Sabatini, D. M. mTOR signaling in growth control and disease. Cell 149, 274–293 (2012).
pubmed: 3331679 pmcid: 3331679
Tumaneng, K., Russell, R. C. & Guan, K. L. Organ size control by Hippo and TOR pathways. Curr. Biol. 22, R368–R379 (2012).
pubmed: 22575479 pmcid: 3601681
Yu, F. X., Zhao, B. & Guan, K. L. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163, 811–828 (2015).
pubmed: 4638384 pmcid: 4638384
Pan, D. The Hippo signaling pathway in development and cancer. Dev. Cell 19, 491–505 (2010).
pubmed: 20951342 pmcid: 3124840
Yu, F. X. & Guan, K. L. The Hippo pathway: regulators and regulations. Genes Dev. 27, 355–371 (2013).
pubmed: 23431053 pmcid: 3589553
Meng, Z., Moroishi, T. & Guan, K. L. Mechanisms of Hippo pathway regulation. Genes Dev. 30, 1–17 (2016).
pubmed: 26728553 pmcid: 4701972
Ma, S., Meng, Z., Chen, R. & Guan, K. L. The Hippo pathway: biology and pathophysiology. Annu. Rev. Biochem. 88, 577–604 (2019).
pubmed: 30566373
Zoncu, R., Efeyan, A. & Sabatini, D. M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12, 21–35 (2011).
pubmed: 21157483
Saxton, R. A. & Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell 168, 960–976 (2017).
pubmed: 28283069 pmcid: 28283069
Kim, J. & Guan, K. L. mTOR as a central hub of nutrient signalling and cell growth. Nat. Cell Biol. 21, 63–71 (2019).
pubmed: 30602761
Zhao, B. et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 21, 2747–2761 (2007).
pubmed: 17974916 pmcid: 2045129
Yu, F. X. et al. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150, 780–791 (2012).
pubmed: 22863277 pmcid: 22863277
Tumaneng, K. et al. YAP mediates crosstalk between the Hippo and PI(3)K–TOR pathways by suppressing PTEN via miR-29. Nat. Cell Biol. 14, 1322–1329 (2012).
pubmed: 23143395 pmcid: 4019071
Hamaratoglu, F. et al. The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat. Cell Biol. 8, 27–36 (2006).
pubmed: 16341207
Zhang, N. et al. The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev. Cell 19, 27–38 (2010).
pubmed: 20643348 pmcid: 2925178
Yin, F. et al. Spatial organization of Hippo signaling at the plasma membrane mediated by the tumor suppressor Merlin/NF2. Cell 154, 1342–1355 (2013).
pubmed: 24012335
Chan, E. H. et al. The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene 24, 2076–2086 (2005).
pubmed: 15688006
Pearce, L. R., Komander, D. & Alessi, D. R. The nuts and bolts of AGC protein kinases. Nat. Rev. Mol. Cell Biol. 11, 9–22 (2010).
pubmed: 20027184
Hara, K. et al. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J. Biol. Chem. 273, 14484–14494 (1998).
pubmed: 9603962
Long, X., Lin, Y., Ortiz-Vega, S., Yonezawa, K. & Avruch, J. Rheb binds and regulates the mTOR kinase. Curr. Biol. 15, 702–713 (2005).
pubmed: 15854902
Inoki, K., Li, Y., Xu, T. & Guan, K. L. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 17, 1829–1834 (2003).
pubmed: 12869586 pmcid: 196227
Tee, A. R., Manning, B. D., Roux, P. P., Cantley, L. C. & Blenis, J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol. 13, 1259–1268 (2003).
pubmed: 12906785
Hara, K. et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110, 177–189 (2002).
pubmed: 12150926
Kim, D. H. et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163–175 (2002).
pubmed: 12150925
Sancak, Y. et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell 25, 903–915 (2007).
pubmed: 17386266
Sancak, Y. et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496–1501 (2008).
pubmed: 2475333 pmcid: 2475333
Peterson, T. R. et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137, 873–886 (2009).
pubmed: 19446321 pmcid: 2758791
Thoreen, C. C. et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J. Biol. Chem. 284, 8023–8032 (2009).
pubmed: 19150980 pmcid: 2658096
Laplante, M. & Sabatini, D. M. Regulation of mTORC1 and its impact on gene expression at a glance. J. Cell Sci. 126, 1713–1719 (2013).
pubmed: 23641065 pmcid: 3678406
Duvel, K. et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 39, 171–183 (2010).
pubmed: 20670887 pmcid: 2946786
Dibble, C. C. & Manning, B. D. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat. Cell Biol. 15, 555–564 (2013).
pubmed: 23728461 pmcid: 3743096
Wei, W. et al. Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature 428, 194–198 (2004).
pubmed: 15014503
Boehm, J. S., Hession, M. T., Bulmer, S. E. & Hahn, W. C. Transformation of human and murine fibroblasts without viral oncoproteins. Mol. Cell Biol. 25, 6464–6474 (2005).
pubmed: 16024784 pmcid: 1190359
Yuan, M., Breitkopf, S. B., Yang, X. & Asara, J. M. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat. Protoc. 7, 872–881 (2012).
pubmed: 22498707 pmcid: 3685491
Guo, J. et al. pVHL suppresses kinase activity of Akt in a proline-hydroxylation-dependent manner. Science 353, 929–932 (2016).
pubmed: 27563096 pmcid: 5326551
Xie, J. et al. Short DNA hairpins compromise recombinant adeno-associated virus genome homogeneity. Mol. Ther. 25, 1363–1374 (2017).
pubmed: 28462820 pmcid: 5474962
Grieger, J. C., Choi, V. W. & Samulski, R. J. Production and characterization of adeno-associated viral vectors. Nat. Protoc. 1, 1412–1428 (2006).
pubmed: 17406430

Auteurs

Wenjian Gan (W)

Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA. ganw@musc.edu.
Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA. ganw@musc.edu.

Xiaoming Dai (X)

Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

Xiangpeng Dai (X)

Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

Jun Xie (J)

Li Weibo Institute for Rare Diseases Research and Horae Gene Therapy Center and Vector Core, University of Massachusetts Medical School, Worcester, MA, USA.

Shasha Yin (S)

Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.

Junjie Zhu (J)

F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurology, Harvard Medical School, Boston, MA, USA.

Chen Wang (C)

F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurology, Harvard Medical School, Boston, MA, USA.

Yuchen Liu (Y)

Department of Developmental Biology, Harvard Stem Cell Institute, Harvard School of Dental Medicine, Boston, MA, USA.

Jianping Guo (J)

Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

Min Wang (M)

Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
Departments of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Jing Liu (J)

Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

Jia Hu (J)

Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
Departments of Urology, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Ryan J Quinton (RJ)

The Laboratory of Cancer Cell Biology, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
Division of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA.

Neil J Ganem (NJ)

The Laboratory of Cancer Cell Biology, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
Division of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA.

Pengda Liu (P)

Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

John M Asara (JM)

Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA, USA.

Pier Paolo Pandolfi (PP)

Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

Yingzi Yang (Y)

Department of Developmental Biology, Harvard Stem Cell Institute, Harvard School of Dental Medicine, Boston, MA, USA.

Zhigang He (Z)

F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurology, Harvard Medical School, Boston, MA, USA.

Guangping Gao (G)

Li Weibo Institute for Rare Diseases Research and Horae Gene Therapy Center and Vector Core, University of Massachusetts Medical School, Worcester, MA, USA.

Wenyi Wei (W)

Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA. wwei2@bidmc.harvard.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH