Pectin Interaction with Immune Receptors is Modulated by Ripening Process in Papayas.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
03 02 2020
03 02 2020
Historique:
received:
05
07
2019
accepted:
07
01
2020
entrez:
5
2
2020
pubmed:
6
2
2020
medline:
11
11
2020
Statut:
epublish
Résumé
Dietary fibers have been shown to exert immune effects via interaction with pattern recognition receptors (PRR) such as toll-like receptors (TLR) and nucleotide-binding oligomerization domain (NOD)-like receptors. Pectin is a dietary fiber that interacts with PRR depending on its chemical structure. Papaya pectin retains different chemical structures at different ripening stages. How this influence PRR signaling is unknown. The aim of this work was to determine how ripening influences pectin structures and their ability to interact with TLR2, 3, 4, 5 and 9, and NOD1 and 2. It was evaluated the interaction of the water-soluble fractions rich in pectin extracted from unripe to ripe papayas. The pectin extracted from ripe papayas activated all the TLR and, to a lesser extent, the NOD receptors. The pectin extracted from unripe papayas also activated TLR2, 4 and 5 but inhibited the activation of TLR3 and 9. The differences in pectin structures are the higher methyl esterification and smaller galacturonan chains of pectin from ripe papayas. Our finding might lead to selection of ripening stages for tailored modulation of PRR to support or attenuate immunity.
Identifiants
pubmed: 32015377
doi: 10.1038/s41598-020-58311-0
pii: 10.1038/s41598-020-58311-0
pmc: PMC6997392
doi:
Substances chimiques
CARD Signaling Adaptor Proteins
0
Dietary Fiber
0
Receptors, Immunologic
0
Receptors, Pattern Recognition
0
Toll-Like Receptors
0
Pectins
89NA02M4RX
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1690Références
Cummings, J. H., Edmond, L. M. & Magee, E. A. Dietary carbohydrates and health: Do we still need the fibre concept? Clin. Nutr. Suppl. 1, 5–17 (2004).
doi: 10.1016/j.clnu.2004.09.003
Minamida, K., Nishimura, M., Miwa, K. & Nishihira, J. Effects of dietary fiber with Bacillus coagulans lilac-01 on bowel movement and fecal properties of healthy volunteers with a tendency for constipation. Biosci. Biotechnol. Biochem. 79, 300–306 (2015).
pubmed: 25338680
doi: 10.1080/09168451.2014.972331
pmcid: 25338680
Cario, E. Bacterial interactions with cells of the intestinal mucosa: Toll-like receptors and NOD2. Gut 54, 1182–1193 (2005).
pubmed: 15840688
pmcid: 1774880
doi: 10.1136/gut.2004.062794
Ramberg, J. E., Nelson, E. D. & Sinnott, R. A. Immunomodulatory dietary polysaccharides: A systematic review of the literature. Nutr. J. 9, 54 (2010).
pubmed: 21087484
pmcid: 2998446
doi: 10.1186/1475-2891-9-54
Ferreira, S. S., Passos, C. P., Madureira, P., Vilanova, M. & Coimbra, M. A. Structure-function relationships of immunostimulatory polysaccharides: A review. Carbohydr. Polym. 132, 378–396 (2015).
pubmed: 26256362
doi: 10.1016/j.carbpol.2015.05.079
pmcid: 26256362
Sahasrabudhe, N. M. et al. Dietary fiber pectin directly blocks toll-like receptor 2-1 and prevents doxorubicin-induced ileitis. Front. Immunol. 9, 1–19 (2018).
doi: 10.3389/fimmu.2018.00383
Gibson, G. R., Probert, H. M., Loo, J. V., Rastall, R. A. & Roberfroid, M. B. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr. Res. Rev. 17, 259 (2004).
pubmed: 19079930
doi: 10.1079/NRR200479
pmcid: 19079930
Goverse, G. et al. Diet-Derived Short Chain Fatty Acids Stimulate Intestinal Epithelial Cells To Induce Mucosal Tolerogenic Dendritic Cells. J. Immunol. 1600165. https://doi.org/10.4049/jimmunol.1600165 (2017).
pubmed: 28100682
doi: 10.4049/jimmunol.1600165
pmcid: 28100682
Shibata, T. et al. Toll-like receptors as a target of food-derived anti-inflammatory compounds. J. Biol. Chem. 289, 32757–32772 (2014).
pubmed: 25294874
pmcid: 4239626
doi: 10.1074/jbc.M114.585901
Takeda, K. & Akira, S. Toll-like receptors in innate immunity. Int. Immunol. 17, 1–14 (2005).
pubmed: 15585605
doi: 10.1093/intimm/dxh186
pmcid: 15585605
Jiang, Z., Mak, T. W., Sen, G. & Li, X. Toll-like receptor 3-mediated activation of NF-κB and IRF3 diverges at Toll-IL-1 receptor domain-containing adapter inducing IFN-β. Proc. Natl. Acad. Sci. 101, 1–6 (2004).
doi: 10.1073/pnas.0307293101
Vogt, L. M. et al. The impact of lemon pectin characteristics on TLR activation and T84 intestinal epithelial cell barrier function. J. Funct. Foods 22, 398–407 (2016).
doi: 10.1016/j.jff.2016.02.002
Vogt, L. M. et al. Toll-Like Receptor 2 Activation by β2→1-Fructans Protects Barrier Function of T84 Human Intestinal Epithelial Cells in a Chain Length-Dependent Manner. J. Nutr. 144, 1002–1008 (2014).
pubmed: 24790027
doi: 10.3945/jn.114.191643
pmcid: 24790027
Vogt, L. et al. Immune Modulation by Different Types of β2→1-fructans Is Toll-Like Receptor Dependent. PLoS One 8, 1–12 (2013).
Mohnen, D. Pectin structure and biosynthesis. Curr. Opin. Plant Biol. 11, 266–277 (2008).
pubmed: 18486536
doi: 10.1016/j.pbi.2008.03.006
pmcid: 18486536
Fabi, J. P. et al. Papaya Fruit Ripening: Response to Ethylene and 1-Methylcyclopropene (1-MCP). J. Food Agric. Food Chem. 55, 6118–6123 (2007).
doi: 10.1021/jf070903c
do Prado, S. B. R. et al. Physiological Degradation of Pectin in Papaya Cell Walls: Release of Long Chains Galacturonans Derived from Insoluble Fractions during Postharvest Fruit Ripening. Front. Plant Sci. 7, 1120 (2016).
pubmed: 27512402
pmcid: 4961711
doi: 10.3389/fpls.2016.01120
do Prado, S. B. R. et al. Ripening-induced chemical modifications of papaya pectin inhibit cancer cell proliferation. Sci. Rep. 7, 16564 (2017).
doi: 10.1038/s41598-017-16709-3
Fabi, J. P. et al. Analysis of Papaya Cell Wall-Related Genes during Fruit Ripening Indicates a Central Role of Polygalacturonases during Pulp Softening. PLoS One 9, e105685 (2014).
pubmed: 25162506
pmcid: 4146514
doi: 10.1371/journal.pone.0105685
Prado, S., Santos, G. R., Mourão, P. & Fabi, J. Chelate-soluble pectin fraction from papaya pulp interacts with galectin-3 and inhibits colon cancer cell proliferation. Int. J. Biol. Macromol. 126, 170–178 (2019).
pubmed: 30584930
doi: 10.1016/j.ijbiomac.2018.12.191
Szymanska-Chargot, M. & Zdunek, A. Use of FT-IR Spectra and PCA to the Bulk Characterization of Cell Wall Residues of Fruits and Vegetables Along a Fraction Process. Food Biophys. 8, 29–42 (2013).
pubmed: 23487553
doi: 10.1007/s11483-012-9279-7
Chylinska, M., Kruk, B. & Zdunek, A. Combining FT-IR spectroscopy and multivariate analysis for qualitative and quantitative analysis of the cell wall composition changes during apples development. Carbohydr. Polym. 115, 93–103 (2015).
pubmed: 25439873
doi: 10.1016/j.carbpol.2014.08.039
Cybulska, J., Zdunek, A. & Koziol, A. The self-assembled network and physiological degradation of pectins in carrot cell walls. Food Hydrocoll. 43, 41–50 (2015).
doi: 10.1016/j.foodhyd.2014.04.032
Fabi, J. P., Cordenunsi, B. R., Seymour, G. B., Lajolo, F. M. & do Nascimento, J. R. O. Molecular cloning and characterization of a ripening-induced polygalacturonase related to papaya fruit softening. Plant Physiol. Biochem. 47, 1075–81 (2009).
pubmed: 19703778
doi: 10.1016/j.plaphy.2009.08.002
Hug, H., Mohajeri, M. H. & La Fata, G. Toll-like receptors: Regulators of the immune response in the human gut. Nutrients 10, 11–13 (2018).
doi: 10.3390/nu10020203
Wang, T., Park, Y. B., Cosgrove, D. J. & Hong, M. Cellulose-Pectin Spatial Contacts Are Inherent to Never-Dried Arabidopsis Primary Cell Walls: Evidence from Solid-State Nuclear Magnetic Resonance. Plant Physiol. 168, 871–884 (2015).
pubmed: 26036615
pmcid: 4741345
doi: 10.1104/pp.15.00665
Cosgrove, D. J. Re-constructing our models of cellulose and primary cell wall assembly. Curr. Opin. Plant Biol. 22, 122–131 (2014).
pubmed: 25460077
pmcid: 4293254
doi: 10.1016/j.pbi.2014.11.001
Zykwinska, A., Thibault, J. F. & Ralet, M. C. Competitive binding of pectin and xyloglucan with primary cell wall cellulose. Carbohydr. Polym. 74, 957–961 (2008).
doi: 10.1016/j.carbpol.2008.05.004
Paniagua, C. et al. Unravelling the nanostructure of strawberry fruit pectins by atomic force microscopy. Food Chem. 224, 4–6 (2017).
doi: 10.1016/j.foodchem.2016.12.049
Posé, S., Kirby, A. R., Mercado, J. A., Morris, V. J. & Quesada, M. A. Structural characterization of cell wall pectin fractions in ripe strawberry fruits using AFM. Carbohydr. Polym. 88, 882–890 (2012).
doi: 10.1016/j.carbpol.2012.01.029
Kacuráková, M., Capek, P., Sasinková, V., Wellner, N. & Ebringerová, A. FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses. Carbohydr. Polym. 43, 195–203 (2000).
doi: 10.1016/S0144-8617(00)00151-X
Sahasrabudhe, N. M., Dokter-Fokkens, J. & de Vos, P. Particulate β-glucans synergistically activate TLR4 and Dectin-1 in human dendritic cells. Mol. Nutr. Food Res. 60, 2514–2522 (2016).
pubmed: 27358258
doi: 10.1002/mnfr.201600356
pmcid: 27358258
Van Hung, T. & Suzuki, T. Guar gum fiber increases suppressor of cytokine signaling-1 expression via toll-like receptor 2 and dectin-1 pathways, regulating inflammatory response in small intestinal epithelial cells. Mol. Nutr. Food Res. 61, 1700048 (2017).
doi: 10.1002/mnfr.201700048
Ortega-González, M. et al. Nondigestible oligosaccharides exert nonprebiotic effects on intestinal epithelial cells enhancing the immune response via activation of TLR4-NFκB. Mol. Nutr. Food Res. 58, 384–393 (2014).
pubmed: 24039030
doi: 10.1002/mnfr.201300296
pmcid: 24039030
Kumalasari, I. D., Nishi, K., Putra, A. B. N. & Sugahara, T. Activation of macrophages stimulated by the bengkoang fiber extract through toll-like receptor 4. Food Funct. 5, 1403–1408 (2014).
pubmed: 24770453
doi: 10.1039/c3fo60360a
pmcid: 24770453
Ishisono, K., Yabe, T. & Kitaguchi, K. Citrus pectin attenuates endotoxin shock via suppression of Toll-like receptor signaling in Peyer’s patch myeloid cells. J. Nutr. Biochem. 50, 38–45 (2017).
pubmed: 29031241
doi: 10.1016/j.jnutbio.2017.07.016
pmcid: 29031241
Javanmardi, J. Antioxidant activity and total phenolic content of Iranian Ocimum accessions. Food Chem. 83, 547–550 (2003).
doi: 10.1016/S0308-8146(03)00151-1
Shiga, T. M. et al. Changes in cell wall composition associated to the softening of ripening papaya: evidence of extensive solubilization of large molecular mass galactouronides. J. Agric. Food Chem. 57, 7064–71 (2009).
pubmed: 19588990
doi: 10.1021/jf900073b
pmcid: 19588990
Shiga, T. M., Carpita, N. C., Lajolo, F. M. & Cordenunsi-Lysenko, B. R. Two banana cultivars differ in composition of potentially immunomodulatory mannan and arabinogalactan. Carbohydr. Polym. 164, 31–41 (2017).
pubmed: 28325331
doi: 10.1016/j.carbpol.2017.01.079
pmcid: 28325331
Castro-Alves, V. C., Sansone, M., Sansone, A. B. & do Nascimento, J. R. O. Polysaccharides from raw and cooked chayote modulate macrophage function. Food Res. Int. 81, 171–179 (2016).
doi: 10.1016/j.foodres.2016.01.017
Huisman, M. M. H., Oosterveld, A. & Schols, H. A. Fast determination of the degree of methyl esterification of pectins by head-space GC. Food Hydrocoll. 18, 665–668 (2004).
doi: 10.1016/j.foodhyd.2003.11.006
Prado, S. B. R. et al. Migration and proliferation of cancer cells in culture are differentially affected by molecular size of modified citrus pectin. Carbohydr Polym. 211, 141–151 (2019).
pubmed: 30824074
doi: 10.1016/j.carbpol.2019.02.010