A misprocessed form of Apolipoprotein A-I is specifically associated with recurrent Focal Segmental Glomerulosclerosis.
Amino Acid Sequence
Antibody Specificity
Apolipoprotein A-I
/ genetics
Biomarkers
Blotting, Western
Electrophoresis, Gel, Two-Dimensional
Glomerulosclerosis, Focal Segmental
/ metabolism
Humans
Mass Spectrometry
Molecular Weight
Polymorphism, Single Nucleotide
Protein Precursors
/ metabolism
Protein Processing, Post-Translational
Recurrence
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
24 01 2020
24 01 2020
Historique:
received:
01
09
2019
accepted:
10
01
2020
entrez:
26
1
2020
pubmed:
26
1
2020
medline:
13
11
2020
Statut:
epublish
Résumé
Apolipoprotein A-Ib (ApoA-Ib) is a high molecular weight form of Apolipoprotein A-I (ApoA-I) found specifically in the urine of kidney-transplanted patients with recurrent idiopathic focal segmental glomerulosclerosis (FSGS). To determine the nature of the modification present in ApoA-Ib, we sequenced the whole APOA1 gene in ApoA-Ib positive and negative patients, and we also studied the protein primary structure using mass spectrometry. No genetic variations in the APOA1 gene were found in the ApoA-Ib positive patients that could explain the increase in its molecular mass. The mass spectrometry analysis revealed three extra amino acids at the N-Terminal end of ApoA-Ib that were not present in the standard plasmatic form of ApoA-I. These amino acids corresponded to half of the propeptide sequence of the immature form of ApoA-I (proApoA-I) indicating that ApoA-Ib is a misprocessed form of proApoA-I. The description of ApoA-Ib could be relevant not only because it can allow the automated analysis of this biomarker in the clinical practice but also because it has the potential to shed light into the molecular mechanisms that cause idiopathic FSGS, which is currently unknown.
Identifiants
pubmed: 31980684
doi: 10.1038/s41598-020-58197-y
pii: 10.1038/s41598-020-58197-y
pmc: PMC6981185
doi:
Substances chimiques
Apolipoprotein A-I
0
Biomarkers
0
Protein Precursors
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1159Références
Rosenberg, A. Z. & Kopp, J. B. Focal segmental glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 12, 502–517 (2017).
pubmed: 28242845
pmcid: 5338705
doi: 10.2215/CJN.05960616
Wada, T. & Nangaku, M. A circulating permeability factor in focal segmental glomerulosclerosis: the hunt continues. Clin. Kidney J. 8, 708–15 (2015).
pubmed: 26613029
pmcid: 4655796
doi: 10.1093/ckj/sfv090
Königshausen, E. & Sellin, L. Circulating Permeability Factors in Primary Focal Segmental Glomerulosclerosis: A Review of Proposed Candidates. Biomed Res. Int. 2016 (2016).
Reiser, J., Nast, C. C. & Alachkar, N. Permeability factors in focal and segmental glomerulosclerosis. Adv. Chronic Kidney Dis. 21, 417–21 (2014).
pubmed: 25168830
pmcid: 4149759
doi: 10.1053/j.ackd.2014.05.010
Cosio, F. G. & Cattran, D. C. Recent advances in our understanding of recurrent primary glomerulonephritis after kidney transplantation. Kidney Int. 91, 304–314 (2017).
pubmed: 27837947
doi: 10.1016/j.kint.2016.08.030
pmcid: 27837947
Ponticelli, C. Recurrence of focal segmental glomerular sclerosis (FSGS) after renal transplantation. Nephrol. Dial. Transplant. 25, 25–31 (2010).
pubmed: 19875378
doi: 10.1093/ndt/gfp538
pmcid: 19875378
Lopez-Hellin, J. et al. A form of apolipoprotein a-I is found specifically in relapses of focal segmental glomerulosclerosis following transplantation. Am. J. Transplant 13, 493–500 (2013).
pubmed: 23205849
doi: 10.1111/j.1600-6143.2012.04338.x
pmcid: 23205849
Puig-Gay, N. et al. Apolipoprotein A-Ib as a biomarker of focal segmental glomerulosclerosis recurrence after kidney transplantation: diagnostic performance and assessment of its prognostic value – a multi-centre cohort study. Transpl. Int. 32, 313–322 (2019).
pubmed: 30411406
doi: 10.1111/tri.13372
pmcid: 30411406
Clark, A. J. et al. Urinary apolipoprotein AI in children with kidney disease. Pediatr. Nephrol. 34, 2351–2360 (2019).
pubmed: 31230128
doi: 10.1007/s00467-019-04289-5
pmcid: 31230128
Jacobs-Cachá, C. & López-Hellín, J. Should high molecular weight forms of apolipoprotein A-I be analyzed in urine of relapsing FSGS patients? Pediatr. Nephrol. 34, 2423–2424 (2019).
Feingold, K. R. & Grunfeld, C. Introduction to Lipids and Lipoproteins. Endotext (MDText.com, Inc., 2000).
Ramasamy, I. Recent advances in physiological lipoprotein metabolism. Clinical Chemistry and Laboratory Medicine 52, 1695–1727 (2014).
pubmed: 23940067
doi: 10.1515/cclm-2013-0358
pmcid: 23940067
Zhu, J. et al. Regulation of apoAI processing by procollagen C-proteinase enhancer-2 and bone morphogenetic protein-1. J. Lipid Res. 50, 1330–9 (2009).
pubmed: 19237735
pmcid: 2694332
doi: 10.1194/jlr.M900034-JLR200
Sviridov, D. Maturation of apolipoprotein A-I: unrecognized health benefit or a forgotten rudiment? J. Lipid Res. 50, 1257–8 (2009).
pubmed: 19332654
pmcid: 2694325
doi: 10.1194/jlr.E900003-JLR200
Sprecher, D. L., Taam, L. & Brewer, H. B. Two-dimensional electrophoresis of human plasma apolipoproteins. Clin. Chem. 30, 2084–2092 (1984).
pubmed: 6437698
doi: 10.1093/clinchem/30.12.2084
pmcid: 6437698
Bojanovski, D. et al. Human apolipoprotein A-I isoprotein metabolism: proapoA-I conversion to mature apoA-I. J. Lipid Res. 26, 185–193 (1985).
pubmed: 3989377
pmcid: 3989377
Jaleel, A. et al. Identification of de novo synthesized and relatively older proteins: Accelerated oxidative damage to de novo synthesized apolipoprotein A-1 in type 1 diabetes. Diabetes 59, 2366–2374 (2010).
pubmed: 20622162
pmcid: 3279529
doi: 10.2337/db10-0371
Gogonea, V. Structural Insights into High Density Lipoprotein: Old Models and New Facts. Front. Pharmacol. 6, 318 (2015).
pubmed: 26793109
pmcid: 26793109
Arciello, A., Piccoli, R. & Monti, D. M. Apolipoprotein A-I: the dual face of a protein. FEBS Lett. 590, 4171–4179 (2016).
pubmed: 27790714
doi: 10.1002/1873-3468.12468
Gåfvels, M. & Bengtson, P. A fast semi-quantitative LC–MS method for measurement of intact apolipoprotein A-I reveals novel proteoforms in serum. Clin. Chim. Acta 442, 87–95 (2015).
pubmed: 25603406
doi: 10.1016/j.cca.2015.01.011
pmcid: 25603406
Domingo-Espín, J., Nilsson, O., Bernfur, K., Del Giudice, R. & Lagerstedt, J. O. Site-specific glycations of apolipoprotein A-I lead to differentiated functional effects on lipid-binding and on glucose metabolism. Biochim. Biophys. Acta - Mol. Basis Dis. 1864, 2822–2834 (2018).
pubmed: 29802959
doi: 10.1016/j.bbadis.2018.05.014
pmcid: 29802959
Brown, B. E. et al. Apolipoprotein A-I glycation by Glucose and Reactive Aldehydes Alters Phospholipid Affinity but Not Cholesterol Export from Lipid-Laden Macrophages. PLoS One 8, e65430 (2013).
pubmed: 23741493
pmcid: 3669297
doi: 10.1371/journal.pone.0065430
Nedelkov, D. Mass Spectrometric Studies of Apolipoprotein Proteoforms and Their Role in Lipid Metabolism and Type 2 Diabetes. Proteomes 5, 27 (2017).
pmcid: 5748562
doi: 10.3390/proteomes5040027
Cubedo, J., Padró, T. & Badimon, L. Glycoproteome of human apolipoprotein A-I: N- and O-glycosylated forms are increased in patients with acute myocardial infarction. Transl. Res. 164, 209–222 (2014).
pubmed: 24709669
doi: 10.1016/j.trsl.2014.03.008
pmcid: 24709669
Májek, P. et al. N-Glycosylation of apolipoprotein A1 in cardiovascular diseases. Transl. Res. 165, 360–362 (2015).
pubmed: 25262938
doi: 10.1016/j.trsl.2014.09.003
pmcid: 25262938
Májek, P. et al. Plasma proteome changes in cardiovascular disease patients: novel isoforms of apolipoprotein A1. J. Transl. Med. 9, 84 (2011).
pubmed: 21631938
pmcid: 3224581
doi: 10.1186/1479-5876-9-84
Clark, A. J., Yang, H. & Kon, V. Urinary apoAl: novel marker of renal disease? Pediatr. Nephrol. 34, 2425–2426 (2019).
Wen, Y., Shah, S. & Campbell, K. N. Molecular Mechanisms of Proteinuria in Focal Segmental Glomerulosclerosis. Front. Med. 5, 98 (2018).
doi: 10.3389/fmed.2018.00098
Genovese, G. et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329, 841–5 (2010).
pubmed: 20647424
pmcid: 2980843
doi: 10.1126/science.1193032
Freedman, B. I. et al. Apolipoprotein L1 nephropathy risk variants associate with HDL subfraction concentration in African Americans. Nephrol. Dial. Transplant. 26, 3805–10 (2011).
pubmed: 21931123
pmcid: 3203631
doi: 10.1093/ndt/gfr542
Frishberg, Y., Toledano, H., Becker-Cohen, R., Feigin, E. & Halle, D. Genetic polymorphism in paraoxonase is a risk factor for childhood focal segmental glomerulosclerosis. Am. J. Kidney Dis. 36, 1253–1261 (2000).
pubmed: 11096050
doi: 10.1053/ajkd.2000.19842
pmcid: 11096050
Santucci, L. et al. Protein-protein interaction heterogeneity of plasma apolipoprotein A1 in nephrotic syndrome. Mol. Biosyst. 7, 659–66 (2011).
pubmed: 21416664
doi: 10.1039/C0MB00127A
pmcid: 21416664
Asami, T., Ciomartan, T., Hayakawa, H., Uchiyama, M. & Tomisawa, S. Apolipoprotein E epsilon 4 allele and nephrotic glomerular diseases in children. Pediatr. Nephrol. 13, 233–6 (1999).
pubmed: 10353412
doi: 10.1007/s004670050599
pmcid: 10353412
Candiano, G. et al. Apolipoproteins prevent glomerular albumin permeability induced in vitro by serum from patients with focal segmental glomerulosclerosis. J. Am. Soc. Nephrol. 12, 143–50 (2001).
pubmed: 11134260
pmcid: 11134260
Strum, J. S. et al. Automated assignments of N- and O-site specific glycosylation with extensive glycan heterogeneity of glycoprotein mixtures. Anal. Chem. 85, 5666–75 (2013).
pubmed: 23662732
pmcid: 3692395
doi: 10.1021/ac4006556
Seckler, H. d. S. et al. A Targeted, Differential Top-Down Proteomic Methodology for Comparison of ApoA-I Proteoforms in Individuals with High and Low HDL Efflux Capacity. J. Proteome Res. 17, 2156–2164 (2018).
pubmed: 29649363
doi: 10.1021/acs.jproteome.8b00100
pmcid: 29649363
Wilkins, M. R. et al. Protein identification and analysis tools in the ExPASy server. Methods Mol. Biol. 112, 531–52 (1999).
pubmed: 10027275
pmcid: 10027275
Song, J. et al. PROSPER: An Integrated Feature-Based Tool for Predicting Protease Substrate Cleavage Sites. PLoS One 7, e50300 (2012).
Carraro, M. et al. The effect of proteinase inhibitors on glomerular albumin permeability induced in vitro by serum from patients with idiopathic focal segmental glomerulosclerosis. Nephrol. Dial. Transplant. 19, 1969–1975 (2004).
pubmed: 15187198
doi: 10.1093/ndt/gfh343
pmcid: 15187198
Harris, J. J. et al. Active proteases in nephrotic plasma lead to a podocin-dependent phosphorylation of VASP in podocytes via protease activated receptor-1. J. Pathol. 229, 660–671 (2013).
pubmed: 23436459
doi: 10.1002/path.4149
pmcid: 23436459
Rinschen, M. M., Huesgen, P. F. & Koch, R. E. The podocyte protease web: Uncovering the gatekeepers of glomerular disease. Am. J. Physiol. - Ren. Physiol. 315, F1812–F1816 (2018).
Palygin, O., Ilatovskaya, D. V. & Staruschenko, X. A. Protease-activated receptors in kidney disease progression. Am J Physiol Ren. Physiol 311, 1140–1144 (2016).
doi: 10.1152/ajprenal.00460.2016
Bergstein, J. M. A practical approach to proteinuria. Pediatric Nephrology 13, 697–700 (1999).
pubmed: 10502130
doi: 10.1007/s004670050684
pmcid: 10502130
Hammad, S. M., Barth, J. L., Knaak, C. & Argraves, W. S. Megalin acts in concert with cubilin to mediate endocytosis of high density lipoproteins. J. Biol. Chem. 275, 12003–8 (2000).
pubmed: 10766831
doi: 10.1074/jbc.275.16.12003
pmcid: 10766831
Nielsen, R., Christensen, E. I. & Birn, H. Megalin and cubilin in proximal tubule protein reabsorption: from experimental models to human disease. Kidney Int. 89, 58–67 (2016).
pubmed: 26759048
doi: 10.1016/j.kint.2015.11.007
pmcid: 26759048
Yang, H., Fogo, A. B. & Kon, V. Kidneys: key modulators of high-density lipoprotein levels and function. Curr. Opin. Nephrol. Hypertens. 25, 174–179 (2016).
pubmed: 27008596
pmcid: 4899840
doi: 10.1097/MNH.0000000000000217
Savitski, M. M. et al. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science (80-.). 346, 1255784–1255784 (2014).
doi: 10.1126/science.1255784
Franken, H. et al. Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry. Nat. Protoc. 10, 1567–1593 (2015).
pubmed: 26379230
doi: 10.1038/nprot.2015.101
pmcid: 26379230