Regulation of osteogenesis via miR-101-3p in mesenchymal stem cells by human gingival fibroblasts.
ETV1
Gingival fibroblast
Mesenchymal stem cell
MicroRNA
miR-101-3p
Journal
Journal of bone and mineral metabolism
ISSN: 1435-5604
Titre abrégé: J Bone Miner Metab
Pays: Japan
ID NLM: 9436705
Informations de publication
Date de publication:
Jul 2020
Jul 2020
Historique:
received:
25
07
2019
accepted:
27
12
2019
pubmed:
24
1
2020
medline:
15
8
2020
entrez:
24
1
2020
Statut:
ppublish
Résumé
Mesenchymal stem cells (MSCs) can differentiate into various types of cells and can thus be used for periodontal regenerative therapy. However, the mechanism of differentiation is still unclear. Transplanted MSCs are, via their transcription factors or microRNAs (miRNAs), affected by periodontal cells with direct contact or secretion of humoral factors. Therefore, transplanted MSCs are regulated by humoral factors from human gingival fibroblasts (HGF). Moreover, insulin-like growth factor (IGF)-1 is secreted from HGF and regulates periodontal regeneration. To clarify the regulatory mechanism for MSC differentiation by humoral factors from HGF, we identified key genes, specifically miRNAs, involved in this process, and determined their function in MSC differentiation. Mesenchymal stem cells were indirectly co-cultured with HGF in osteogenic or growth conditions and then evaluated for osteogenesis, undifferentiated MSC markers, and characteristic miRNAs. MSCs had their miRNA expression levels adjusted or were challenged with IGF-1 during osteogenesis, or both of which were performed, and then, MSCs were evaluated for osteogenesis or undifferentiated MSC markers. Mesenchymal stem cells co-cultured with HGF showed suppression of osteogenesis and characteristic expression of ETV1, an undifferentiated MSC marker, as well as miR-101-3p. Over-expression of miR-101-3p regulated osteogenesis and ETV1 expression as well as indirect co-culture with HGF. IGF-1 induced miR-101-3p and ETV1 expression. However, IGF-1 did not suppress osteogenesis. Humoral factors from HGF suppressed osteogenesis in MSCs. The effect was regulated by miRNAs and undifferentiated MSC markers. miR-101-3p and ETV1 were the key factors and were regulated by IGF-1.
Identifiants
pubmed: 31970478
doi: 10.1007/s00774-019-01080-2
pii: 10.1007/s00774-019-01080-2
doi:
Substances chimiques
Biomarkers
0
MIRN101 microRNA, human
0
MicroRNAs
0
Transcription Factors
0
Insulin-Like Growth Factor I
67763-96-6
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
442-455Références
Nagatomo K, Komaki M, Sekiya I, Sakaguchi Y, Noguchi K, Oda S, Muneta T, Ishikawa I (2006) Stem cell properties of human periodontal ligament cells (in eng). J Periodontal Res 41:303–310. https://doi.org/10.1111/j.1600-0765.2006.00870.x
doi: 10.1111/j.1600-0765.2006.00870.x
pubmed: 16827724
Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament (in eng). Lancet (London, England) 364:149–155. https://doi.org/10.1016/s0140-6736(04)16627-0
doi: 10.1016/s0140-6736(04)16627-0
Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells (in eng). Science (New York, NY) 284:143–147
doi: 10.1126/science.284.5411.143
Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow (in eng). Nature 418:41–49. https://doi.org/10.1038/nature00870
doi: 10.1038/nature00870
Hasegawa N, Kawaguchi H, Hirachi A, Takeda K, Mizuno N, Nishimura M, Koike C, Tsuji K, Iba H, Kato Y, Kurihara H (2006) Behavior of transplanted bone marrow-derived mesenchymal stem cells in periodontal defects (in eng). J Periodontol 77:1003–1007. https://doi.org/10.1902/jop.2006.050341
doi: 10.1902/jop.2006.050341
pubmed: 16734575
Kawaguchi H, Hirachi A, Hasegawa N, Iwata T, Hamaguchi H, Shiba H, Takata T, Kato Y, Kurihara H (2004) Enhancement of periodontal tissue regeneration by transplantation of bone marrow mesenchymal stem cells (in eng). J Periodontol 75:1281–1287. https://doi.org/10.1902/jop.2004.75.9.1281
doi: 10.1902/jop.2004.75.9.1281
pubmed: 15515346
Kittaka M, Kajiya M, Shiba H, Takewaki M, Takeshita K, Khung R, Fujita T, Iwata T, Nguyen TQ, Ouhara K, Takeda K, Fujita T, Kurihara H (2015) Clumps of a mesenchymal stromal cell/extracellular matrix complex can be a novel tissue engineering therapy for bone regeneration (in eng). Cytotherapy 17:860–873. https://doi.org/10.1016/j.jcyt.2015.01.007
doi: 10.1016/j.jcyt.2015.01.007
pubmed: 25743634
Mizuno N, Ozeki Y, Shiba H, Kajiya M, Nagahara T, Takeda K, Kawaguchi H, Abiko Y, Kurihara H (2008) Humoral factors released from human periodontal ligament cells influence calcification and proliferation in human bone marrow mesenchymal stem cells (in eng). J Periodontol 79:2361–2370. https://doi.org/10.1902/jop.2008.070577
doi: 10.1902/jop.2008.070577
pubmed: 19053928
Zhou Y, Zimber M, Yuan H, Naughton GK, Fernan R, Li WJ (2016) Effects of human fibroblast-derived extracellular matrix on mesenchymal stem cells (in eng). Stem Cell Rev Rep 12:560–572. https://doi.org/10.1007/s12015-016-9671-7
doi: 10.1007/s12015-016-9671-7
pubmed: 27342267
Wu Y, Peng Y, Gao D, Feng C, Yuan X, Li H, Wang Y, Yang L, Huang S, Fu X (2015) Mesenchymal stem cells suppress fibroblast proliferation and reduce skin fibrosis through a TGF-beta3-dependent activation (in eng). Int J Low Extrem Wounds 14:50–62. https://doi.org/10.1177/1534734614568373
doi: 10.1177/1534734614568373
Nakayama Y, Takai H, Matsui S, Zhou L, Abiko Y, Ganss B, Ogata Y (2014) Transcriptional regulation of amelotin gene by proinflammatory cytokines in gingival fibroblasts (in eng). Connect Tissue Res 55:18–20. https://doi.org/10.3109/03008207.2014.923848
doi: 10.3109/03008207.2014.923848
pubmed: 25158173
Ogata Y, Matsui S, Kato A, Zhou L, Nakayama Y, Takai H (2014) MicroRNA expression in inflamed and noninflamed gingival tissues from Japanese patients (in eng). J Oral Sci 56:253–260
doi: 10.2334/josnusd.56.253
Ishii M, Koike C, Igarashi A, Yamanaka K, Pan H, Higashi Y, Kawaguchi H, Sugiyama M, Kamata N, Iwata T, Matsubara T, Nakamura K, Kurihara H, Tsuji K, Kato Y (2005) Molecular markers distinguish bone marrow mesenchymal stem cells from fibroblasts (in eng). Biochem Biophys Res Commun 332:297–303. https://doi.org/10.1016/j.bbrc.2005.04.118
doi: 10.1016/j.bbrc.2005.04.118
pubmed: 15896330
Kubo H, Shimizu M, Taya Y, Kawamoto T, Michida M, Kaneko E, Igarashi A, Nishimura M, Segoshi K, Shimazu Y, Tsuji K, Aoba T, Kato Y (2009) Identification of mesenchymal stem cell (MSC)-transcription factors by microarray and knockdown analyses, and signature molecule-marked MSC in bone marrow by immunohistochemistry (in eng). Genes Cells 14:407–424. https://doi.org/10.1111/j.1365-2443.2009.01281.x
doi: 10.1111/j.1365-2443.2009.01281.x
pubmed: 19228201
Kapinas K, Kessler C, Ricks T, Gronowicz G, Delany AM (2010) miR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop (in eng). J Biol Chem 285:25221–25231. https://doi.org/10.1074/jbc.M110.116137
doi: 10.1074/jbc.M110.116137
pubmed: 20551325
pmcid: 2919085
Huang J, Zhao L, Xing L, Chen D (2010) MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation (in eng). Stem Cells (Dayton, Ohio) 28:357–364. https://doi.org/10.1002/stem.288
doi: 10.1002/stem.288
Tome M, Lopez-Romero P, Albo C, Sepulveda JC, Fernandez-Gutierrez B, Dopazo A, Bernad A, Gonzalez MA (2011) miR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells (in eng). Cell Death Differ 18:985–995. https://doi.org/10.1038/cdd.2010.167
doi: 10.1038/cdd.2010.167
pubmed: 21164520
Qiu Y, Chen Y, Zeng T, Guo W, Zhou W, Yang X (2016) EGCG ameliorates the hypoxia-induced apoptosis and osteogenic differentiation reduction of mesenchymal stem cells via upregulating miR-210 (in eng). Mol Biol Rep 43:183–193. https://doi.org/10.1007/s11033-015-3936-0
doi: 10.1007/s11033-015-3936-0
pubmed: 26780211
Jones JI, Clemmons DR (1995) Insulin-like growth factors and their binding proteins: biological actions (in eng). Endocr Rev 16:3–34. https://doi.org/10.1210/edrv-16-1-3
doi: 10.1210/edrv-16-1-3
pubmed: 7758431
Saygun I, Karacay S, Serdar M, Ural AU, Sencimen M, Kurtis B (2008) Effects of laser irradiation on the release of basic fibroblast growth factor (bFGF), insulin like growth factor-1 (IGF-1), and receptor of IGF-1 (IGFBP3) from gingival fibroblasts (in eng). Lasers Med Sci 23:211–215. https://doi.org/10.1007/s10103-007-0477-3
doi: 10.1007/s10103-007-0477-3
pubmed: 17619941
Ochiai H, Okada S, Saito A, Hoshi K, Yamashita H, Takato T, Azuma T (2012) Inhibition of insulin-like growth factor-1 (IGF-1) expression by prolonged transforming growth factor-beta1 (TGF-beta1) administration suppresses osteoblast differentiation (in eng). J Biol Chem 287:22654–22661. https://doi.org/10.1074/jbc.M111.279091
doi: 10.1074/jbc.M111.279091
pubmed: 22573330
pmcid: 3391153
Liu GX, Ma S, Li Y, Yu Y, Zhou YX, Lu YD, Jin L, Wang ZL, Yu JH (2018) Hsa-let-7c controls the committed differentiation of IGF-1-treated mesenchymal stem cells derived from dental pulps by targeting IGF-1R via the MAPK pathways (in eng). Exp Mol Med 50:25. https://doi.org/10.1038/s12276-018-0048-7
doi: 10.1038/s12276-018-0048-7
pubmed: 29650947
pmcid: 5938007
Iwata T, Kawamoto T, Sasabe E, Miyazaki K, Fujimoto K, Noshiro M, Kurihara H, Kato Y (2006) Effects of overexpression of basic helix-loop-helix transcription factor Dec1 on osteogenic and adipogenic differentiation of mesenchymal stem cells (in eng). Eur J Cell Biol 85:423–431. https://doi.org/10.1016/j.ejcb.2005.12.007
doi: 10.1016/j.ejcb.2005.12.007
pubmed: 16487626
Lindhe J, Pontoriero R, Berglundh T, Araujo M (1995) The effect of flap management and bioresorbable occlusive devices in GTR treatment of degree III furcation defects. An experimental study in dogs (in eng). J Clin Periodontol 22:276–283
doi: 10.1111/j.1600-051X.1995.tb00148.x
Dighe AS, Yang S, Madhu V, Balian G, Cui Q (2013) Interferon gamma and T cells inhibit osteogenesis induced by allogeneic mesenchymal stromal cells (in eng). J Orthop Res 31:227–234. https://doi.org/10.1002/jor.22212
doi: 10.1002/jor.22212
pubmed: 22886855
Yang N, Wang G, Hu C, Shi Y, Liao L, Shi S, Cai Y, Cheng S, Wang X, Liu Y, Tang L, Ding Y, Jin Y (2013) Tumor necrosis factor alpha suppresses the mesenchymal stem cell osteogenesis promoter miR-21 in estrogen deficiency-induced osteoporosis (in eng). J Bone Miner Res 28:559–573. https://doi.org/10.1002/jbmr.1798
doi: 10.1002/jbmr.1798
Ciciarello M, Zini R, Rossi L, Salvestrini V, Ferrari D, Manfredini R, Lemoli RM (2013) Extracellular purines promote the differentiation of human bone marrow-derived mesenchymal stem cells to the osteogenic and adipogenic lineages (in eng). Stem Cells Dev 22:1097–1111. https://doi.org/10.1089/scd.2012.0432
doi: 10.1089/scd.2012.0432
Suzuki K, Onoe K, Takahira H (1992) Activation of Ca(2+)-dependent K+ channel and Cl- conductance in canine pancreatic acinar cells through a cyclic AMP pathway (in eng). Jpn J Physiol 42:267–281
doi: 10.2170/jjphysiol.42.267
Asami S, Chin M, Shichino H, Yoshida Y, Nemoto N, Mugishima H, Suzuki T (2008) Treatment of Ewing's sarcoma using an antisense oligodeoxynucleotide to regulate the cell cycle (in eng). Biol Pharm Bull 31:391–394
doi: 10.1248/bpb.31.391
Okazawa M, Abe H, Nakanishi S (2016) The Etv1 transcription factor activity-dependently downregulates a set of genes controlling cell growth and differentiation in maturing cerebellar granule cells (in eng). Biochem Biophys Res Commun 473:1071–1077. https://doi.org/10.1016/j.bbrc.2016.04.017
doi: 10.1016/j.bbrc.2016.04.017
pubmed: 27059140
Adams KL, Rousso DL, Umbach JA, Novitch BG (2015) Foxp1-mediated programming of limb-innervating motor neurons from mouse and human embryonic stem cells (in eng). Nat Commun 6:6778. https://doi.org/10.1038/ncomms7778
doi: 10.1038/ncomms7778
pubmed: 25868900
pmcid: 4397664
Li H, Liu P, Xu S, Li Y, Dekker JD, Li B, Fan Y, Zhang Z, Hong Y, Yang G, Tang T, Ren Y, Tucker HO, Yao Z, Guo X (2017) FOXP1 controls mesenchymal stem cell commitment and senescence during skeletal aging (in eng). J Clin Investig 127:1241–1253. https://doi.org/10.1172/jci89511
doi: 10.1172/jci89511
pubmed: 28240601
Park IH, Kim KH, Choi HK, Shim JS, Whang SY, Hahn SJ, Kwon OJ, Oh IH (2013) Constitutive stabilization of hypoxia-inducible factor alpha selectively promotes the self-renewal of mesenchymal progenitors and maintains mesenchymal stromal cells in an undifferentiated state (in eng). Exp Mol Med 45:e44. https://doi.org/10.1038/emm.2013.87
doi: 10.1038/emm.2013.87
pubmed: 24071737
pmcid: 3789268
Foshay KM, Gallicano GI (2007) Small RNAs, big potential: the role of MicroRNAs in stem cell function (in eng). Curr Stem Cell Res Ther 2:264–271
doi: 10.2174/157488807782793781
Gits CM, van Kuijk PF, Jonkers MB, Boersma AW, van Ijcken WF, Wozniak A, Sciot R, Rutkowski P, Schoffski P, Taguchi T, Mathijssen RH, Verweij J, Sleijfer S, Debiec-Rychter M, Wiemer EA (2013) MiR-17-92 and miR-221/222 cluster members target KIT and ETV1 in human gastrointestinal stromal tumours (in eng). Br J Cancer 109:1625–1635. https://doi.org/10.1038/bjc.2013.483
doi: 10.1038/bjc.2013.483
pubmed: 23969726
pmcid: 3776993
Li J, Lai Y, Ma J, Liu Y, Bi J, Zhang L, Chen L, Yao C, Lv W, Chang G, Wang S, Ouyang M, Wang W (2017) miR-17-5p suppresses cell proliferation and invasion by targeting ETV1 in triple-negative breast cancer (in eng). BMC Cancer 17:745. https://doi.org/10.1186/s12885-017-3674-x
doi: 10.1186/s12885-017-3674-x
pubmed: 29126392
pmcid: 5681773
Isenmann S, Arthur A, Zannettino AC, Turner JL, Shi S, Glackin CA, Gronthos S (2009) TWIST family of basic helix-loop-helix transcription factors mediate human mesenchymal stem cell growth and commitment (in eng). Stem Cells (Dayton, Ohio) 27:2457–2468. https://doi.org/10.1002/stem.181
doi: 10.1002/stem.181
Chang J, Liu F, Lee M, Wu B, Ting K, Zara JN, Soo C, Al Hezaimi K, Zou W, Chen X, Mooney DJ, Wang CY (2013) NF-kappaB inhibits osteogenic differentiation of mesenchymal stem cells by promoting beta-catenin degradation (in eng). Proc Natl Acad Sci USA 110:9469–9474. https://doi.org/10.1073/pnas.1300532110
doi: 10.1073/pnas.1300532110
Matsubara T, Tsutsumi S, Pan H, Hiraoka H, Oda R, Nishimura M, Kawaguchi H, Nakamura K, Kato Y (2004) A new technique to expand human mesenchymal stem cells using basement membrane extracellular matrix (in eng). Biochem Biophys Res Commun 313:503–508
doi: 10.1016/j.bbrc.2003.11.143
Kaewsrichan J, Wongwitwichot P, Chandarajoti K, Chua KH, Ruszymah BH (2011) Sequential induction of marrow stromal cells by FGF2 and BMP2 improves their growth and differentiation potential in vivo (in eng). Arch Oral Biol 56:90–101. https://doi.org/10.1016/j.archoralbio.2010.09.003
doi: 10.1016/j.archoralbio.2010.09.003
pubmed: 21030007
Ozaki T, Wu D, Sugimoto H, Nagase H, Nakagawara A (2013) Runt-related transcription factor 2 (RUNX2) inhibits p53-dependent apoptosis through the collaboration with HDAC6 in response to DNA damage (in eng). Cell Death Dis 4:e610. https://doi.org/10.1038/cddis.2013.127
doi: 10.1038/cddis.2013.127
pubmed: 23618908
pmcid: 3641350
Wang H, Meng Y, Cui Q, Qin F, Yang H, Chen Y, Cheng Y, Shi J, Guo Y (2016) MiR-101 targets the EZH2/Wnt/beta-catenin the pathway to promote the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (in eng). Sci Rep 6:36988. https://doi.org/10.1038/srep36988
doi: 10.1038/srep36988
pubmed: 27845386
pmcid: 5109541
Hou Y, Li L, Ju Y, Lu Y, Chang L, Xiang X (2017) MiR-101-3p regulates the viability of lung squamous carcinoma cells via targeting EZH2 (in eng). J Cell Biochem 118:3142–3149. https://doi.org/10.1002/jcb.25836
doi: 10.1002/jcb.25836
pubmed: 27966775
Liu K, Jing Y, Zhang W, Fu X, Zhao H, Zhou X, Tao Y, Yang H, Zhang Y, Zen K, Zhang C, Li D, Shi Q (2017) Silencing miR-106b accelerates osteogenesis of mesenchymal stem cells and rescues against glucocorticoid-induced osteoporosis by targeting BMP2 (in eng). Bone 97:130–138. https://doi.org/10.1016/j.bone.2017.01.014
doi: 10.1016/j.bone.2017.01.014
pubmed: 28108317
Zhang GP, Zhang J, Zhu CH, Lin L, Wang J, Zhang HJ, Li J, Yu XG, Zhao ZS, Dong W, Liu GB (2017) MicroRNA-98 regulates osteogenic differentiation of human bone mesenchymal stromal cells by targeting BMP2 (in eng). J Cell Mol Med 21:254–264. https://doi.org/10.1111/jcmm.12961
doi: 10.1111/jcmm.12961
pubmed: 27860183
Sandbothe M, Buurman R, Reich N, Greiwe L, Vajen B, Gurlevik E, Schaffer V, Eilers M, Kuhnel F, Vaquero A, Longerich T, Roessler S, Schirmacher P, Manns MP, Illig T, Schlegelberger B, Skawran B (2017) The microRNA-449 family inhibits TGF-beta-mediated liver cancer cell migration by targeting SOX4 (in eng). J Hepatol 66:1012–1021. https://doi.org/10.1016/j.jhep.2017.01.004
doi: 10.1016/j.jhep.2017.01.004
pubmed: 28088579
Qiao L, Liu D, Li CG, Wang YJ (2018) MiR-203 is essential for the shift from osteogenic differentiation to adipogenic differentiation of mesenchymal stem cells in postmenopausal osteoporosis (in eng). Eur Rev Med Pharmacol Sci 22:5804–5814. https://doi.org/10.26355/eurrev_201809_15906
doi: 10.26355/eurrev_201809_15906
pubmed: 30280759
Kurihara H, Shinohara H, Yoshino H, Takeda K, Shiba H (2003) Neurotrophins in cultured cells from periodontal tissues (in eng). J Periodontol 74:76–84. https://doi.org/10.1902/jop.2003.74.1.76
doi: 10.1902/jop.2003.74.1.76
pubmed: 12593600
Kendall HK, Haase HR, Li H, Xiao Y, Bartold PM (2000) Nitric oxide synthase type-II is synthesized by human gingival tissue and cultured human gingival fibroblasts (in eng). J Periodontal Res 35:194–200
doi: 10.1034/j.1600-0765.2000.035004194.x
Guo C, Li C, Yang K, Kang H, Xu X, Xu X, Deng L (2016) Increased EZH2 and decreased osteoblastogenesis during local irradiation-induced bone loss in rats (in eng). Sci Rep 6:31318. https://doi.org/10.1038/srep31318
doi: 10.1038/srep31318
pubmed: 27499068
pmcid: 4976370