The cannabinoid ligands SR141716A and AM251 enhance human and mouse islet function via GPR55-independent signalling.


Journal

Cellular and molecular life sciences : CMLS
ISSN: 1420-9071
Titre abrégé: Cell Mol Life Sci
Pays: Switzerland
ID NLM: 9705402

Informations de publication

Date de publication:
Nov 2020
Historique:
received: 15 08 2019
accepted: 18 12 2019
revised: 02 12 2019
pubmed: 12 1 2020
medline: 11 11 2020
entrez: 12 1 2020
Statut: ppublish

Résumé

Endocannabinoids are lipid mediators involved in the regulation of glucose homeostasis. They interact with the canonical cannabinoid receptors CB Islets isolated from Gpr55 Our results provide the first evidence that SR141716A and AM251 are not GPR55 agonists in islets, as their effects are maintained in islets isolated from Gpr55 These observations may be useful in directing development of peripherally restricted novel therapeutics that are structurally related to SR141716A and AM251, and which potentiate glucose-induced insulin secretion and stimulate β-cell proliferation.

Identifiants

pubmed: 31925452
doi: 10.1007/s00018-019-03433-6
pii: 10.1007/s00018-019-03433-6
pmc: PMC7599183
doi:

Substances chimiques

Cannabinoids 0
Endocannabinoids 0
GPR55 protein, human 0
GPR55 protein, mouse 0
Insulin 0
Ligands 0
Piperidines 0
Pyrazoles 0
Receptors, Cannabinoid 0
Receptors, G-Protein-Coupled 0
AM 251 3I4FA44MAI
Rimonabant RML78EN3XE

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

4709-4723

Subventions

Organisme : Diabetes UK
ID : 11/0004397
Pays : United Kingdom

Références

Rorsman P, Ashcroft FM (2018) Pancreatic beta-cell electrical activity and insulin secretion: of mice and men. Physiol Rev 98(1):117–214. https://doi.org/10.1152/physrev.00008.2017
doi: 10.1152/physrev.00008.2017
Li C, Jones PM, Persaud SJ (2011) Role of the endocannabinoid system in food intake, energy homeostasis and regulation of the endocrine pancreas. Pharmacol Ther 129(3):307–320. https://doi.org/10.1016/j.pharmthera.2010.10.006
doi: 10.1016/j.pharmthera.2010.10.006
Liu B, Song S, Ruz-Maldonado I et al (2017c) GPR55-dependent stimulation of insulin secretion from isolated mouse and human islets of Langerhans. Diabetes Obes Metab 18(12):1263–1273. https://doi.org/10.1111/dom.12780
doi: 10.1111/dom.12780
Ruz-Maldonado I, Pingitore A, Liu B et al (2018) LH-21 and abnormal cannabidiol improve beta-cell function in isolated human and mouse islets through GPR55-dependent and -independent signalling. Diabetes Obes Metab 20(4):930–942. https://doi.org/10.1111/dom.13180
doi: 10.1111/dom.13180
Romero-Zerbo SY, Rafacho A, Diaz-Arteaga A et al (2011) A role for the putative cannabinoid receptor GPR55 in the islets of Langerhans. J Endocrinol 211(2):177–185. https://doi.org/10.1530/JOE-11-0166
doi: 10.1530/JOE-11-0166
Li C, Bowe JE, Jones PM, Persaud SJ (2010) Expression and function of cannabinoid receptors in mouse islets. Islets 2(5):293–302
doi: 10.4161/isl.2.5.12729
Di Marzo V, Matias I (2005) Endocannabinoid control of food intake and energy balance. Nat Neurosci 8(5):585–589. https://doi.org/10.1038/nn1457
doi: 10.1038/nn1457
Witkamp RF (2018) The role of fatty acids and their endocannabinoid-like derivatives in the molecular regulation of appetite. Mol Aspects Med 64:45–67. https://doi.org/10.1016/j.mam.2018.01.002
doi: 10.1016/j.mam.2018.01.002
Rinaldi-Carmona M, Barth F, Heaulme M et al (1994) SR141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett 350(2–3):240–244
doi: 10.1016/0014-5793(94)00773-X
Pertwee RG (1997) Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol Ther 74(2):129–180
doi: 10.1016/S0163-7258(97)82001-3
Sun Y, Chen J (2012) Rimonabant, gastrointestinal motility and obesity. Curr Neuropharmacol 10(3):212–218. https://doi.org/10.2174/157015912803217297
doi: 10.2174/157015912803217297
Despres JP, Golay A, Sjostrom L, Rimonabant in Obesity-Lipids Study G (2005) Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med 353(20):2121–2134. https://doi.org/10.1056/NEJMoa044537
doi: 10.1056/NEJMoa044537
Gaal LF, Rissanen AM, Scheen AJ, Ziegler O, Rossner S, Group RI-ES (2005) Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 365(9468):1389–1397. https://doi.org/10.1016/S0140-6736(05)66374-X
doi: 10.1016/S0140-6736(05)66374-X
Pi-Sunyer FX, Aronne LJ, Heshmati HM, Devin J, Rosenstock J, Group RI-NAS (2006) Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: a randomized controlled trial. JAMA 295(7):761–775. https://doi.org/10.1001/jama.295.7.761
doi: 10.1001/jama.295.7.761
Scheen AJ, Finer N, Hollander P, Jensen MD, Gaal LF, Group RI-DS (2006) Efficacy and tolerability of rimonabant in overweight or obese patients with type 2 diabetes: a randomised controlled study. Lancet 368(9548):1660–1672. https://doi.org/10.1016/S0140-6736(06)69571-8
doi: 10.1016/S0140-6736(06)69571-8
Scheen AJ, Van Gaal LG, Despres JP, Pi-Sunyer X, Golay A, Hanotin C (2006) Rimonabant improves cardiometabolic risk profile in obese or overweight subjects: overview of RIO studies. Revue Medicale Suisse 2(76):1916–1923
Gomez R, Navarro M, Ferrer B et al (2002) A peripheral mechanism for CB1 cannabinoid receptor-dependent modulation of feeding. J Neurosci 22(21):9612–9617
doi: 10.1523/JNEUROSCI.22-21-09612.2002
Hildebrandt AL, Kelly-Sullivan DM, Black SC (2003) Antiobesity effects of chronic cannabinoid CB1 receptor antagonist treatment in diet-induced obese mice. Eur J Pharmacol 462(1–3):125–132
doi: 10.1016/S0014-2999(03)01343-8
Nissen SE, Nicholls SJ, Wolski K et al (2008) Effect of rimonabant on progression of atherosclerosis in patients with abdominal obesity and coronary artery disease: the STRADIVARIUS randomized controlled trial. JAMA 299(13):1547–1560. https://doi.org/10.1001/jama.299.13.1547
doi: 10.1001/jama.299.13.1547
Wright SM, Dikkers C, Aronne LJ (2008) Rimonabant: new data and emerging experience. Curr Atheroscler Rep 10(1):71–78
doi: 10.1007/s11883-008-0011-5
Li C, Bowe JE, Huang GC, Amiel SA, Jones PM, Persaud SJ (2011) Cannabinoid receptor agonists and antagonists stimulate insulin secretion from isolated human islets of Langerhans. Diabetes Obes Metab 13(10):903–910. https://doi.org/10.1111/j.1463-1326.2011.01422.x
doi: 10.1111/j.1463-1326.2011.01422.x
Li C, Jones PM, Persaud SJ (2010) Cannabinoid receptors are coupled to stimulation of insulin secretion from mouse MIN6 beta-cells. Cell Physiol Biochem 26(2):187–196. https://doi.org/10.1159/000320527
doi: 10.1159/000320527
Kapur A, Zhao P, Sharir H et al (2009) Atypical responsiveness of the orphan receptor GPR55 to cannabinoid ligands. J Biol Chem 284(43):29817–29827. https://doi.org/10.1074/jbc.M109.050187
doi: 10.1074/jbc.M109.050187
Henstridge CM, Balenga NA, Schroder R et al (2010) GPR55 ligands promote receptor coupling to multiple signalling pathways. Br J Pharmacol 160(3):604–614. https://doi.org/10.1111/j.1476-5381.2009.00625.x
doi: 10.1111/j.1476-5381.2009.00625.x
Yin H, Chu A, Li W et al (2009) Lipid G protein-coupled receptor ligand identification using beta-arrestin PathHunter assay. J Biol Chem 284(18):12328–12338. https://doi.org/10.1074/jbc.M806516200
doi: 10.1074/jbc.M806516200
Ryberg E, Larsson N, Sjogren S et al (2007) The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 152(7):1092–1101. https://doi.org/10.1038/sj.bjp.0707460
doi: 10.1038/sj.bjp.0707460
Sisay S, Pryce G, Jackson SJ et al (2013) Genetic background can result in a marked or minimal effect of gene knockout (GPR55 and CB2 receptor) in experimental autoimmune encephalomyelitis models of multiple sclerosis. PLoS ONE 8(10):e76907. https://doi.org/10.1371/journal.pone.0076907
doi: 10.1371/journal.pone.0076907
Papadimitriou A, King AJ, Jones PM, Persaud SJ (2007) Anti-apoptotic effects of arachidonic acid and prostaglandin E2 in pancreatic beta-cells. Cell Physiol Biochem 20(5):607–616. https://doi.org/10.1159/000107544
doi: 10.1159/000107544
Huang GC, Zhao M, Jones P et al (2004) The development of new density gradient media for purifying human islets and islet-quality assessments. Transplantation 77(1):143–145. https://doi.org/10.1097/01.TP.0000100401.62912.B2
doi: 10.1097/01.TP.0000100401.62912.B2
Pingitore A, Chambers ES, Hill T et al (2017) The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes Obes Metab 19(2):257–265. https://doi.org/10.1111/dom.12811
doi: 10.1111/dom.12811
Gey GO, Gey MK (1936) The maintenance of human normal cells and tumor cells in continuous culture: I. Preliminary report: cultivation of mesoblastic tumors and normal tissue and notes on methods of cultivation. Am J Cancer 27:45–76
doi: 10.1158/ajc.1936.45
Jones PM, Salmon DM, Howell SL (1988) Protein phosphorylation in electrically permeabilized islets of Langerhans. Effects of Ca
doi: 10.1042/bj2540397
Heynen-Genel S, Dahl R, Shi S, Milan L, Hariharan S, Sergienko E, Hedrick M, Dad S, Stonich D, Su Y, Vicchiarelli M, Mangravita-Novo A, Smith LH, Chung TDY, Sharir H, Caron MG, Barak LS, Abood ME (2010) Screening for selective ligands for GPR55 - antagonists. In: Probe reports from the nih molecular libraries program. [Internet]. National Center for Biotechnology Information (US), Bethesda (MD)
Fong TM (2010) Measurement of inverse agonism of the cannabinoid receptors. Methods Enzymol 485:139–145. https://doi.org/10.1016/B978-0-12-381296-4.00008-7
doi: 10.1016/B978-0-12-381296-4.00008-7
Gilon P, Henquin JC (2001) Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function. Endocr Rev 22(5):565–604. https://doi.org/10.1210/edrv.22.5.0440
doi: 10.1210/edrv.22.5.0440
Getty-Kaushik L, Richard AM, Deeney JT, Krawczyk S, Shirihai O, Corkey BE (2009) The CB1 antagonist rimonabant decreases insulin hypersecretion in rat pancreatic islets. Obesity 17(10):1856–1860. https://doi.org/10.1038/oby.2009.234
doi: 10.1038/oby.2009.234
Bermudez-Silva FJ, Romero-Zerbo SY, Haissaguerre M et al (2016) The cannabinoid CB1 receptor and mTORC1 signalling pathways interact to modulate glucose homeostasis in mice. Dis Models Mech 9(1):51–61. https://doi.org/10.1242/dmm.020750
doi: 10.1242/dmm.020750
Ulgen F, Kuhn MC, Cupisti K et al (2011) The CB-1 receptor antagonist rimonabant modulates the interaction between adipocytes and pancreatic beta-cells in vitro. Exp Clin Endocrinol Diabetes 119(1):41–46. https://doi.org/10.1055/s-0030-1261963
doi: 10.1055/s-0030-1261963
Gonzalez-Mariscal I, Krzysik-Walker SM, Doyle ME et al (2016) Human CB1 receptor isoforms, present in hepatocytes and beta-cells, are involved in regulating metabolism. Sci Rep 6:33302. https://doi.org/10.1038/srep33302
doi: 10.1038/srep33302
Duvivier VF, Delafoy-Plasse L, Delion V et al (2009) Beneficial effect of a chronic treatment with rimonabant on pancreatic function and beta-cell morphology in Zucker Fatty rats. Eur J Pharmacol 616(1–3):314–320. https://doi.org/10.1016/j.ejphar.2009.05.024
doi: 10.1016/j.ejphar.2009.05.024
McKillop AM, Moran BM, Abdel-Wahab YH, Flatt PR (2013) Evaluation of the insulin releasing and antihyperglycaemic activities of GPR55 lipid agonists using clonal beta-cells, isolated pancreatic islets and mice. Br J Pharmacol 170(5):978–990. https://doi.org/10.1111/bph.12356
doi: 10.1111/bph.12356
Gonzalez-Mariscal I, Krzysik-Walker SM, Kim W, Rouse M, Egan JM (2016) Blockade of cannabinoid 1 receptor improves GLP-1R mediated insulin secretion in mice. Mol Cell Endocrinol 423:1–10. https://doi.org/10.1016/j.mce.2015.12.015
doi: 10.1016/j.mce.2015.12.015
Tam J, Vemuri VK, Liu J et al (2010) Peripheral CB1 cannabinoid receptor blockade improves cardiometabolic risk in mouse models of obesity. J Clin Invest 120(8):2953–2966. https://doi.org/10.1172/JCI42551
doi: 10.1172/JCI42551
Hollander PA, Amod A, Litwak LE, Chaudhari U, Group AS (2010) Effect of rimonabant on glycemic control in insulin-treated type 2 diabetes: the ARPEGGIO trial. Diabetes Care 33(3):605–607. https://doi.org/10.2337/dc09-0455
doi: 10.2337/dc09-0455
Pingitore A, Ruz-Maldonado I, Liu B, Huang GC, Choudhary P, Persaud SJ (2017) Dynamic profiling of insulin secretion and ATP generation in isolated human and mouse islets reveals differential glucose sensitivity. Cell Physiol Biochem 44(4):1352–1359. https://doi.org/10.1159/000485532
doi: 10.1159/000485532
Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren PO, Caicedo A (2006) The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci USA 103(7):2334–2339. https://doi.org/10.1073/pnas.0510790103
doi: 10.1073/pnas.0510790103
Morales P, Reggio PH (2017) An update on non-CB1, non-CB2 cannabinoid related G-protein-coupled receptors. Cannabis Cannabinoid Res 2(1):265–273. https://doi.org/10.1089/can.2017.0036
doi: 10.1089/can.2017.0036
Ye L, Cao Z, Wang W, Zhou N (2019) New insights in cannabinoid receptor structure and signaling. Curr Mol Pharmacol 12(3):239–248. https://doi.org/10.2174/1874467212666190215112036
doi: 10.2174/1874467212666190215112036
Zador F, Kocsis D, Borsodi A, Benyhe S (2014) Micromolar concentrations of rimonabant directly inhibits delta opioid receptor specific ligand binding and agonist-induced G-protein activity. Neurochem Int 67:14–22. https://doi.org/10.1016/j.neuint.2013.12.005
doi: 10.1016/j.neuint.2013.12.005
Pertwee RG, Howlett AC, Abood ME et al (2010) International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol Rev 62(4):588–631. https://doi.org/10.1124/pr.110.003004
doi: 10.1124/pr.110.003004
Console-Bram L, Brailoiu E, Brailoiu GC, Sharir H, Abood ME (2014) Activation of GPR18 by cannabinoid compounds: a tale of biased agonism. Br J Pharmacol 171(16):3908–3917. https://doi.org/10.1111/bph.12746
doi: 10.1111/bph.12746
Laun AS, Shrader SH, Brown KJ, Song ZH (2019) GPR3, GPR6, and GPR12 as novel molecular targets: their biological functions and interaction with cannabidiol. Acta Pharmacol Sin 40(3):300–308. https://doi.org/10.1038/s41401-018-0031-9
doi: 10.1038/s41401-018-0031-9
Priestley R, Glass M, Kendall D (2017) Functional selectivity at cannabinoid receptors. Adv Pharmacol 80:207–221. https://doi.org/10.1016/bs.apha.2017.03.005
doi: 10.1016/bs.apha.2017.03.005
Kohno M, Hasegawa H, Inoue A et al (2006) Identification of N-arachidonylglycine as the endogenous ligand for orphan G-protein-coupled receptor GPR18. Biochem Biophys Res Commun 347(3):827–832. https://doi.org/10.1016/j.bbrc.2006.06.175
doi: 10.1016/j.bbrc.2006.06.175
Amisten S, Neville M, Hawkes R, Persaud SJ, Karpe F, Salehi A (2015) An atlas of G-protein coupled receptor expression and function in human subcutaneous adipose tissue. Pharmacol Ther 146:61–93. https://doi.org/10.1016/j.pharmthera.2014.09.007
doi: 10.1016/j.pharmthera.2014.09.007
Fagelskiold AJ, Kannisto K, Bostrom A et al (2012) Insulin-secreting INS-1E cells express functional TRPV1 channels. Islets 4(1):56–63. https://doi.org/10.4161/isl.18915
doi: 10.4161/isl.18915
Zhong B, Ma S, Wang DH (2019) TRPV1 mediates glucose-induced insulin secretion through releasing neuropeptides. In Vivo 33(5):1431–1437. https://doi.org/10.21873/invivo.11621
doi: 10.21873/invivo.11621
Akiba Y, Kato S, Katsube K et al (2004) Transient receptor potential vanilloid subfamily 1 expressed in pancreatic islet beta cells modulates insulin secretion in rats. Biochem Biophys Res Commun 321(1):219–225. https://doi.org/10.1016/j.bbrc.2004.06.149
doi: 10.1016/j.bbrc.2004.06.149
Diaz-Garcia CM, Morales-Lazaro SL, Sanchez-Soto C, Velasco M, Rosenbaum T, Hiriart M (2014) Role for the TRPV1 channel in insulin secretion from pancreatic beta cells. J Membr Biol 247(6):479–491. https://doi.org/10.1007/s00232-014-9658-8
doi: 10.1007/s00232-014-9658-8
Romero-Zerbo SY, Ruz-Maldonado I, Espinosa-Jimenez V et al (2017) The cannabinoid ligand LH-21 reduces anxiety and improves glucose handling in diet-induced obese pre-diabetic mice. Sci Rep 7(1):3946. https://doi.org/10.1038/s41598-017-03292-w
doi: 10.1038/s41598-017-03292-w
Vilches-Flores A, Hauge-Evans AC, Jones PM, Persaud SJ (2013) Chronic activation of cannabinoid receptors in vitro does not compromise mouse islet function. Clin Sci 124(7):467–478. https://doi.org/10.1042/CS20120447
doi: 10.1042/CS20120447
Vilches-Flores A, Franklin Z, Hauge-Evans AC et al (2016) Prolonged activation of human islet cannabinoid receptors in vitro induces adaptation but not dysfunction. BBA Clin 5:143–150. https://doi.org/10.1016/j.bbacli.2016.03.009
doi: 10.1016/j.bbacli.2016.03.009
Kim W, Doyle ME, Liu Z et al (2011) Cannabinoids inhibit insulin receptor signaling in pancreatic beta-cells. Diabetes 60(4):1198–1209. https://doi.org/10.2337/db10-1550
doi: 10.2337/db10-1550
Kim W, Lao Q, Shin YK et al (2012) Cannabinoids induce pancreatic beta-cell death by directly inhibiting insulin receptor activation. Sci Signal 5(216):ra23. https://doi.org/10.1126/scisignal.2002519
doi: 10.1126/scisignal.2002519
Jourdan T, Godlewski G, Cinar R et al (2013) Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates beta cell loss in type 2 diabetes. Nat Med 19(9):1132–1140. https://doi.org/10.1038/nm.3265
doi: 10.1038/nm.3265
Linnemann AK, Baan M, Davis DB (2014) Pancreatic beta-cell proliferation in obesity. Adv Nutr 5(3):278–288. https://doi.org/10.3945/an.113.005488
doi: 10.3945/an.113.005488
Gary-Bobo M, Elachouri G, Scatton B, Le Fur G, Oury-Donat F, Bensaid M (2006) The cannabinoid CB1 receptor antagonist rimonabant (SR141716) inhibits cell proliferation and increases markers of adipocyte maturation in cultured mouse 3T3 F442A preadipocytes. Mol Pharmacol 69(2):471–478. https://doi.org/10.1124/mol.105.015040
doi: 10.1124/mol.105.015040
Hutch CR, Hegg CC (2016) Cannabinoid receptor signaling induces proliferation but not neurogenesis in the mouse olfactory epithelium. Neurogenesis (Austin) 3(1):e1118177. https://doi.org/10.1080/23262133.2015.1118177
doi: 10.1080/23262133.2015.1118177
Piazza GA, Ritter JL, Baracka CA (1995) Lysophosphatidic acid induction of transforming growth factors alpha and beta: modulation of proliferation and differentiation in cultured human keratinocytes and mouse skin. Exp Cell Res 216(1):51–64. https://doi.org/10.1006/excr.1995.1007
doi: 10.1006/excr.1995.1007
Sumitomo A, Siriwach R, Thumkeo D et al (2018) LPA induces keratinocyte differentiation and promotes skin barrier function through the LPAR1/LPAR5-RHO-ROCK-SRF axis. J Invest Dermatol. https://doi.org/10.1016/j.jid.2018.10.034
doi: 10.1016/j.jid.2018.10.034

Auteurs

Inmaculada Ruz-Maldonado (I)

Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 1UL, UK. inmaculada.ruz_maldonado@kcl.ac.uk.

Bo Liu (B)

Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 1UL, UK.

Patricio Atanes (P)

Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 1UL, UK.

Attilio Pingitore (A)

Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 1UL, UK.

Guo Cai Huang (GC)

Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 1UL, UK.

Pratik Choudhary (P)

Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 1UL, UK.

Shanta J Persaud (SJ)

Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 1UL, UK. shanta.persaud@kcl.ac.uk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH