Crossover of the effective charge in ionic thermoresponsive hydrogel particles.


Journal

Physical review. E
ISSN: 2470-0053
Titre abrégé: Phys Rev E
Pays: United States
ID NLM: 101676019

Informations de publication

Date de publication:
Nov 2019
Historique:
received: 12 06 2019
entrez: 25 12 2019
pubmed: 25 12 2019
medline: 25 12 2019
Statut: ppublish

Résumé

We use a generalized nonlinear Poisson-Boltzmann cell model that includes excluded-volume effects to investigate whether the effective charge (Z_{eff}) of charged thermosensitive hydrogel particles increases or decreases upon the hydrogel thermal collapse. We find the existence of a crossover charge, Z^{*}, that separates two regimes. For hydrogel bare charges below Z^{*} the system shows a behavior consistent with theories based on linear approximations, i.e., Z_{eff} increases in the collapsed state. However, for bare charges above Z^{*}, the system enters an anomalous regime, in which Z_{eff} decreases in the collapsed state. We show that diluted hydrogel suspensions at low ionic strength are more likely to follow the anomalous behavior. Our theory provides a full physical justification for the controversial theoretical and experimental results reported in this regard, and describes how the interplay between electrostatic, excluded-volume and entropic effects affects this crossover.

Identifiants

pubmed: 31869873
doi: 10.1103/PhysRevE.100.050602
doi:

Substances chimiques

Hydrogels 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

050602

Auteurs

A Moncho-Jordá (A)

Departamento de Física Aplicada, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain.
Instituto Carlos I de Física Teórica y Computacional, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain.

M Quesada-Pérez (M)

Departamento de Física, Escuela Politécnica Superior de Linares, Universidad de Jaén, 23700 Linares, Jaén, Spain.

Articles similaires

Animals Osteogenesis Osteoporosis Mesenchymal Stem Cells Humans
Calcium Carbonate Sand Powders Construction Materials Materials Testing

Classifications MeSH