Network analysis of pig movements in Argentina: Identification of key farms in the spread of infectious diseases and their biosecurity levels.


Journal

Transboundary and emerging diseases
ISSN: 1865-1682
Titre abrégé: Transbound Emerg Dis
Pays: Germany
ID NLM: 101319538

Informations de publication

Date de publication:
May 2020
Historique:
received: 26 02 2019
revised: 16 11 2019
accepted: 18 11 2019
pubmed: 1 12 2019
medline: 2 10 2020
entrez: 1 12 2019
Statut: ppublish

Résumé

This study uses network analysis to evaluate how swine movements in Argentina could contribute to disease spread. Movement data for the 2014-2017 period were obtained from Argentina's online livestock traceability registry and categorized as follows: animals of high genetic value sent to other farms, animals to or from markets, animals sent to finisher operations and slaughterhouse. A network analysis was carried out considering the first three movement types. First, descriptive, centrality and cohesion measures were calculated for each movement type and year. Next, to determine whether networks had a small-world topology, these were compared with the results from random Erdös-Rényi network simulations. Then, the basic reproductive number (R

Identifiants

pubmed: 31785089
doi: 10.1111/tbed.13441
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1152-1163

Informations de copyright

© 2019 Blackwell Verlag GmbH.

Références

Alarcón, L. V., Monterubbianesi, M., Perelman, S., Sanguinetti, H. R., Perfumo, C. J., Mateu, E., & Allepuz, A. (2019). Biosecurity assessment of argentinean pig farms. Preventive Veterinary Medicine, 170, 104637. https://doi.org/10.1016/j.prevetmed.2019.02.012
Allepuz, A., Martín-Valls, G. E., Casal, J., & Mateu, E. (2018). Development of a risk assessment tool for improving biosecurity on pig farms. Preventive Veterinary Medicine, 153, 56-63. https://doi.org/10.1016/j.prevetmed.2018.02.014
Amass, S., Mason, P., Pacheco, J., Miller, C., Ramirez, A., Clark, L., … Kenyon, S. (2004). Procedures for preventing transmission of foot-and-mouth disease virus (O/TAW/97) by people. Veterinary Microbiology, 103, 143-149.
Bigras-Poulin, M., Thompson, R. A., Chriel, M., Mortensen, S., & Greiner, M. (2006). Network analysis of Danish cattle industry trade patterns as an evaluation of risk potential for disease spread. Preventive Veterinary Medicine, 76, 11-39. https://doi.org/10.1016/j.prevetmed.2006.04.004
Büttner, K., Krieter, J., & Traulsen, I. (2015). Characterization of contact structures for the spread of infectious diseases in a pork supply chain in northern Germany by dynamic network analysis of yearly and monthly networks. Transboundary and Emerging Diseases, 62, 188-199. https://doi.org/10.1111/tbed.12106
Carpinetti, B., Castresana, G., Rojas, P., Grant, J., Marcos, A., Monterubbianesi, M., … Aleksa, A. (2017). Determinación de anticuerpos contra patógenos virales y bacterianos seleccionados en la población de cerdos silvestres (Sus scrofa) de la Reserva Natural Bahía Samborombón, Argentina. Analecta Veterinaria, 37, 21-27.
Christley, R. M., Pinchbeck, G. L., Bowers, R. G., Clancy, D., French, N. P., Bennett, R., & Turner, J. (2005). Infection in social networks: using network analysis to identify high-risk individuals. Am. J. Epidemiol., 162, 1024-1031. https://doi.org/org/10.1093/aje/kwi308
Clauset, A., Shalizi, C. R., & Newman, M. E. J. (2009). Power-law distributions in empirical data. SIAM Review, 51, 661-703. https://doi.org/10.1137/070710111
Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research. International Journal of Complex System, 1695, 1-9.
Dewulf, J., & Van Immerseel, F. (2018). Biosecurity in animal production and veterinary medicine. Den Haag, The Netherlands: Acco Leuven.
Dirección Nacional de Producción Ganadera, Subsecretaria de ganaderia, secretaria de Agricultura, ganaderia y pesca, Ministerio de Agroinsudtria (2017). Anuario Porcino. Retrieved from https://www.agroindustria.gob.ar/sitio/areas/porcinos/estadistica/_archivos//000005-Anuario/170000-Anuario%202017.pdf
Dorjee, S., Revie, C. W., Poljak, Z., McNab, W. B., & Sanchez, J. (2013). Network analysis of swine shipments in Ontario, Canada, to support disease spread modelling and risk-based disease management. Preventive Veterinary Medicine, 112, 118-127. https://doi.org/10.1016/j.prevetmed.2013.06.008
Dubé, C., Ribble, C., Kelton, D., & McNab, B. (2009). A review of network analysis terminology and its application to foot-and mouth disease modelling and policy development. Transboundary and Emerging Diseases, 56, 73-85. https://doi.org/10.1111/j.1865-1682.2008.01064.x
Dunowska, M. (2018).Circle of disease transmission. In J. Dewulf, & F. Van Immerseel (Eds.), Chapter 1: Biosecurity in animal production and veterinary medicine. Leuven, Belgium: Acco. https://biblio.ugent.be/publication/8553887
El Productor Porcino (2018). Para entender la crisis que atraviesa el sector porcino. Retrieved from https://elproductorporcino.com/leerEntrada/num/416
Enright, J., & Kao, R. R. (2016). A descriptive analysis of the growth of unrecorded interactions amongst cattle-raising premises in Scotland and their implications for disease spread. BMC Veterinary Research, 12(1), 37. https://doi.org/10.1186/s12917-016-0652-5
Erdos, P., & Rényi, A. (1960). On the evolution of random graphs. Publication of the Mathematical Institute of the Hungarian Academy of Sciences, 5, 17-61. https://doi.org/10.1.1.153.5943
Fèvre, E. M., Bronsvoort, B. M. D. C., Hamilton, K. A., & Cleaveland, S. (2006). Animal movements and the spread of infectious diseases. Trends in Microbiology, 14, 125-131. https://doi.org/10.1016/j.tim.2006.01.004
Fritzemeier, J., Teuffert, J., Greiser-Wilke, I., Staubach, C., Schlüter, H., & Moennig, V. (2000). Epidemiology of classical swine fever in Germany in the 1990s. Veterinary Microbiology, 77, 29-41. https://doi.org/10.1016/S0378-1135(00)00254-6
Frössling, J., Ohlson, A., Björkman, C., Hakansson, N., & Nöremark, M. (2012). Application of network analysis parameters in risk-based surveillance - Examples based on cattle trade data and bovine infections in Sweden. Preventive Veterinary Medicine, 105, 202-208. https://doi.org/10.1016/j.prevetmed.2011.12.011
Gibbens, J. C., Sharpe, C., Wilesmith, J. W., Mansley, L. M., Michalopoulou, E., Ryan, J. B., & Hudson, M. (2001). Descriptive epidemiology of the 2001 foot-and-mouth disease epidemic in Great Britain: The first five months. The Veterinary Record, 149, 729-743. https://doi.org/10.1136/vr.149.24.729
Gilbert, M., Mitchell, A., Bourn, J., Mawdsley, R., Clifton-Hadley, R., & Wint, W. (2005). Cattle movements and bovine tuberculosis in Great Britain. Nature, 435, 491-496. https://doi.org/10.1038/nature03548
Gillespie, C. S. (2015). Fitting heavy tailed distributions: The poweRlaw package. Journal of Statistical Software, 64(2), 1-16. https://doi.org/10.18637/jss.v064.i02
Hanneman, R. A., & Riddle, M. (2005). Introduction to social network methods. Riverside, CA: University of California, Riverside.
Iglesias, D., & Ghezan, G. (2013). Análisis de la cadena de la carne porcina en Argentina. Estudios socioeconómicos de los sistemas agrolimentarios y agroindustriales. Ediciones INTA. Retrieved from https://inta.gob.ar/sites/default/files/script-tmp-inta-_cadena_de_carne_porcina_n12.pdf
Kao, R. R., Danon, L., Green, D. M., & Kiss, I. Z. (2006). Demographic structure and pathogen dynamics on the network of livestock movements in Great Britain. Proceedings of the Royal Society B: Biological Sciences, 273, 1999-2007. https://doi.org/10.1098/rspb.2006.3505
Kao, R., Green, D. M., Johnson, J., & Kiss, I. Z. (2007). Disease dynamics over very different time-scales: Foot-and-mouth disease and scrapie on the network of livestock movements in the UK. Journal of the Royal Society Interface, 4, 907-916. https://doi.org/10.1098/rsif.2007.1129
Keeling, M. J., & Eames, K. T. D. (2005). Networks and epidemic models. Journal of the Royal Society Interface, 2, 295-307. https://doi.org/10.1098/rsif.2005.0051
Lee, K., Polson, D., Lowe, E., Main, R., Holtkamp, D., & Martínez-López, B. (2017). Unraveling the contact patterns and network structure of pig shipments in the United States and its association with porcine reproductive and respiratory syndrome virus (PRRSV) outbreaks. Preventive Veterinary Medicine, 138, 113-123. https://doi.org/10.1016/j.prevetmed.2017.02.001
Lentz, H. H. K., Koher, A., Hövel, P., Gethmann, J., Sauter-Louis, C., Thomas, S. T., … Conraths, F. J. (2016). Disease spread through animal movements: A static and temporal network analysis of pig trade in Germany. PLoS ONE, 11(5): e0155196. https://doi.org/10.1371/journal.pone.0155196.
Lichoti, J. K., Davies, J., Kitala, P. M., Githigia, S. M., Okoth, E., Maru, Y., … Bishop, R. P. (2016). Social network analysis provides insights into African swine fever epidemiology. Preventive Veterinary Medicine, 126, 1-10. https://doi.org/10.1016/j.prevetmed.2016.01.019
Mansley, L. M., Dunlop, P. J., Whiteside, S. M., & Smith, R. G. (2003). Early dissemination of foot-and mouth disease virus through sheep marketing in February 2001. The Veterinary Record, 153, 43-50. https://doi.org/10.1136/vr.153.2.43
Marquetoux, N., Stevenson, M., Wilson, P., Ridler, A., & Heuer, C. (2016). Using social network analysis to inform disease control interventions. Preventive Veterinary Medicine, 126, 94-104. https://doi.org/10.1016/j.prevetmed.2016.01.022
Martínez-López, B., Perez, A., & Sánchez-Vizcaíno, J. (2009). Social network analysis. Review of general concepts and use in preventive veterinary medicine. Transboundary and Emerging Diseases, 56, 109-120. https://doi.org/10.1111/j.1865-1682.2009.01073.x
Monterubbianesi, M., Vidal, M., Debenedetti, R., Suárez, M., Barral, L., & Duffy, S. (2016). Serological surveillance of the porcine reproductive respiratory syndrome in Argentina (2010-2015). XIII Congreso Nacional de Producción Porcina. Memorias XIX.
National Service for Health and AgriFood Quality (2014). Resolución 423-2014. Retrieved from http://www.senasa.gob.ar/normativas/resolucion-423-2014-senasa-servicio-nacional-de-sanidad-y-calidad-agroalimentaria
National Service for Health and AgriFood Quality (2016). Statistics report. Retrieved from http://www.senasa.gob.ar/cadenaanimal/porcinos/informacion/informes-y-estadisticas
National Service for Health and AgriFood Quality (2017). On line Systems: Integrated information management system for animal health. Retrieved from http://web-legacy.senasa.gob.ar/sistemas-online/sigsa-dte
Newman, M. E. J. (2000). Models of the small World. Journal of Statistical Physics, 101, 34.
Nöremark, M., Håkansson, N., Lewerin, S. S., Lindberg, A., & Jonsson, A. (2011). Network analysis of cattle and pig movements in Sweden: Measures relevant for disease control and risk-based surveillance. Preventive Veterinary Medicine, 99, 78-90. https://doi.org/10.1016/j.prevetmed.2010.12.009
Nugent, R., & McLeod, A. (2004). Livestock policy discussion paper no. 9: Transboundary animal diseases: Assessment of socio-economic impacts and institutional responses A. Food and Agriculture Organization Livestock Information and Policy Branch, AGAL February 2004. Retrieved from http://www.fao.org/3/a-ag273e.pdf
Ortiz-Pelaez, A., Pfeiffer, D. U., Soares-Magalhães, R. J., & Guitian, F. J. (2006). Use of social network analysis to characterize the pattern of animal movements in the initial phases of the 2001 foot and mouth disease (FMD) epidemic in the UK. Preventive Veterinary Medicine, 76, 40-55. https://doi.org/10.1016/j.prevetmed.2006.04.007
Pileri, E., & Mateu, E. (2016). Review on the transmission porcine reproductive and respiratory syndrome virus between pigs and farms and impact on vaccination. Veterinary Research, 2016(47), 108. https://doi.org/10.1186/s13567-016-0391-4
R Development Core Team. (2014). A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Relun, A., Grosbois, V., Sánchez-Vizcaíno, J. M., Alexandrov, T., Feliziani, F., Waret-Szkuta, A., … Martínez-López, B. (2016). Spatial and functional organization of pig trade in different European production systems: Implications for disease prevention and control. Frontiers in Veterinary Science, 3, 4. https://doi.org/10.3389/fvets.2016.00004
Salines, M., Andraud, M., & Rose, N. (2017). Pig movements in France: Designing network models fitting the transmission route of pathogens. PLoS ONE, 12, e0185858. https://doi.org/10.1371/journal.pone.0185858
Salman, M. D. (2013). Surveillance tools and strategies for animal diseases in a shifting climate context. Animal Health Research Reviews, 14(2), 147-150. https://doi.org/10.1017/S1466252313000121
Schulz, J., Boklund, A., Halasa, T. H. B., Toft, N., & Lentz, H. H. K. (2017). Network analysis of pig movements: Loyalty patterns and contact chains of different holding types in Denmark. PLoS ONE. 12(6), e0179915. https://doi.org/10.1371/journal.pone.0179915
SENASA (Servicio Nacional de Calidad Agroalimentaria) (2009). Resolución (SAGPyA) 474/09. Del 31/7/2009. B.O.: 7/8/2009. Programa Nacional de Control y Erradicación de la Enfermedad de Aujeszky - Etapa 2009-2012. Retrieved from http://www.senasa.gob.ar/normativas/resolucion-474-2009-senasa-servicio-nacional-de-sanidad-y-calidad-agroalimentaria
Stärk, K. D. C., Regula, G., Hernandez, J., Knopf, L., Fuchs, K., Morris, R. S., & Davies, P. (2006). Concepts for risk-based surveillance in the field of veterinary medicine and veterinary public health: Review of current approaches. BMC Health Services Research, 6, 20. https://doi.org/10.1186/1472-6963-6-20
Sterchi, M., Faverjon, C., Sarasua, C., Vargas, M. E., Berezowski, J., Bernstein,… Nathues, H. (2019). The pig transport network in Switzerland: Structure, patterns, and implications for the transmission of infectious diseases between animal holdings. PLoS ONE, 14(5), e0217974. https://doi.org/10.1371/journal.pone.0217974
Thakur, K., Revie, C., Hurnik, D., Poljak, Z., & Sánchez, J. (2014). Analysis of swine movement in four Canadian regions: Network structure and implications for disease spread. Transboundary and Emerging Diseases, 63, e14-e26. https://doi.org/10.1111/tbed.12225
VanderWaal, K., Perez, A., Torremorrell, M., Morrison, R. M., & Craft, M. (2018). Role of animal movement and indirect contact among farms in transmission of porcine epidemic diarrhea virus. Epidemics, 24, 67-75. https://doi.org/10.1016/j.epidem.2018.04.001
Volkova, V. V., Howey, R., Savill, N. J., & Woolhouse, M. E. J. (2010). Sheep movement networks and the transmission of infectious diseases. PLoS ONE, 5, e11185. https://doi.org/10.1371/journal.pone.0011185
Woolhouse, M. E. J., Dye, C., Etard, J.-F., Smith, T., Charlwood, J. D., Garnett, G. P., … Anderson, R. M. (1997). Heterogeneities in the transmission of infectious agents: Implications for the design of control programs. Proceedings of the National Academy of Sciences of the United States of America, 94, 338-342. https://doi.org/10.1073/pnas.94.1.338
Woolhouse, M. E. J., Shaw, D. J., Matthews, L., Liu, W.-C., Mellor, D. J., & Thomas, M. R. (2005). Epidemiological implications of the contact network structure for cattle farms and the 20-80 rule. Biology Letters, 1, 350-352. https://doi.org/10.1098/rsbl.2005.0331
World Organisation for Animal Health (2011). Terrestrial animal health code (20th ed., vol. 1). Paris, France: World Organisation for Animal Health.
World Organisation for Animal Health (2018). Country Information. Retrieved from http://www.oie.int/wahis_2/public/wahid.php/Countryinformation/Animalsituation

Auteurs

Laura V Alarcón (LV)

Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain.
Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Buenos Aires, Argentina.

Pablo A Cipriotti (PA)

Facultad de Agronomía - IFEVA, Universidad de Buenos Aires/CONICET, Buenos Aires, Argentina.

Mariela Monterubbianessi (M)

National Service for Health and AgriFood Quality (SENASA), Ministerio de Producción y Trabajo, Buenos Aires, Argentina.

Carlos Perfumo (C)

Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Buenos Aires, Argentina.

Enric Mateu (E)

Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain.
Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain.

Alberto Allepuz (A)

Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain.
Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH