Efficacy of antimicrobial agents delivered to hernia meshes using an adaptable thermo-responsive hyaluronic acid-based coating.


Journal

Hernia : the journal of hernias and abdominal wall surgery
ISSN: 1248-9204
Titre abrégé: Hernia
Pays: France
ID NLM: 9715168

Informations de publication

Date de publication:
12 2020
Historique:
received: 24 07 2019
accepted: 17 11 2019
pubmed: 30 11 2019
medline: 8 6 2021
entrez: 30 11 2019
Statut: ppublish

Résumé

Mesh-related infection is a critical outcome for patients with hernia defect stabilized with synthetic or biological meshes. Even though bioactive meshes loaded with antibiotics or antiseptics are slowly emerging in the market, the available solutions still lack versatility. Here, we proposed a polymer solution, i.e., hyaluronic acid-poly(N-isopropylacrylamide) (HApN), which forms a hydrogel to be used as coating for meshes only when it reaches body temperature. We assessed how the gelation of HApN was influenced by the incorporation of different antibiotic and antiseptic formulations, and how this gel can be used to coat several mesh types. The impact of the coating on the elastic behavior of a macroporous mesh was tested under cyclic elongation condition. Finally, we selected two different coating formulations, one based on antibiotics (gentamicin + rifampicin) and one based on antiseptic (chlorhexidine) and tested in vitro their antimicrobial efficacies. HApN can be used as carrier for different antimicrobial agents, without having a strong influence on its gelation behavior. Porous or dense meshes can be coated with this polymer, even though the stability was not optimal on macroporous meshes such as Optilene when pores are too large. HApN loaded with drugs inhibited in vitro the growth of several Gram-positive and Gram-negative bacteria. Compared to the available technologies developed to endow meshes with antibacterial activity, the proposed HApN offers further versatility with potential to prevent mesh-related infection in hernioplasty.

Identifiants

pubmed: 31781966
doi: 10.1007/s10029-019-02096-3
pii: 10.1007/s10029-019-02096-3
doi:

Substances chimiques

Anti-Infective Agents 0
Hyaluronic Acid 9004-61-9

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1201-1210

Références

Brown RH, Subramanian A, Hwang CS, Chang S, Awad SS (2013) Comparison of infectious complications with synthetic mesh in ventral hernia repair. Am J Surg 205(2):182–187. https://doi.org/10.1016/j.amjsurg.2012.02.023
doi: 10.1016/j.amjsurg.2012.02.023 pubmed: 23331984
Falagas ME, Kasiakou SK (2005) Mesh-related infections after hernia repair surgery. Clin Microbiol Infect 11(1):3–8. https://doi.org/10.1111/j.1469-0691.2004.01014.x
doi: 10.1111/j.1469-0691.2004.01014.x pubmed: 15649297
Dabbas N, Adams K, Pearson K, Royle G (2011) Frequency of abdominal wall hernias: is classical teaching out of date? JRSM Short Rep 2(1):5–5. https://doi.org/10.1258/shorts.2010.010071
doi: 10.1258/shorts.2010.010071 pubmed: 21286228 pmcid: 3031184
Kingsnorth A, LeBlanc K (2003) Hernias: inguinal and incisional. Lancet 362(9395):1561–1571. https://doi.org/10.1016/S0140-6736(03)14746-0
doi: 10.1016/S0140-6736(03)14746-0 pubmed: 14615114
Oliveira WF, Silva PMS, Silva RCS, Silva GMM, Machado G, Coelho L et al (2018) Staphylococcus aureus and Staphylococcus epidermidis infections on implants. J Hosp Infect 98(2):111–117. https://doi.org/10.1016/j.jhin.2017.11.008
doi: 10.1016/j.jhin.2017.11.008 pubmed: 29175074
Enzler MJ, Berbari E, Osmon DR (2011) Antimicrobial prophylaxis in adults. Mayo Clin Proc 86(7):686–701. https://doi.org/10.4065/mcp.2011.0012
doi: 10.4065/mcp.2011.0012 pubmed: 21719623 pmcid: 3127564
Guillaume O, Perez-Tanoira R, Fortelny R, Redl H, Moriarty TF, Richards RG et al (2018) Infections associated with mesh repairs of abdominal wall hernias: are antimicrobial biomaterials the longed-for solution? Biomaterials 167:15–31. https://doi.org/10.1016/j.biomaterials.2018.03.017
doi: 10.1016/j.biomaterials.2018.03.017 pubmed: 29554478
Cobb WS, Paton BL, Novitsky YW, Rosen MJ, Kercher KW, Kuwada TS et al (2006) Intra-abdominal placement of antimicrobial-impregnated mesh is associated with noninfectious fever. Am Surg 72(12):1205–1208 (Discussion 1208-9)
doi: 10.1177/000313480607201210
Baker EH, Lepere D, Lundgren MP, Greaney PJ, Ehrlich DA, Copit SE et al (2016) Early clinical outcomes of a novel antibiotic-coated, non-crosslinked porcine acellular dermal graft after complex abdominal wall reconstruction. J Am Coll Surg 223(4):581–586. https://doi.org/10.1016/j.jamcollsurg.2016.05.022
doi: 10.1016/j.jamcollsurg.2016.05.022 pubmed: 27421887
Perez-Kohler B, Bayon Y, Bellon JM (2016) Mesh infection and hernia repair: a review. Surg Infect (Larchmt) 17(2):124–137. https://doi.org/10.1089/sur.2015.078
doi: 10.1089/sur.2015.078
Guillaume O, Teuschl AH, Gruber-Blum S, Fortelny RH, Redl H, Petter-Puchner A (2015) Emerging trends in abdominal wall reinforcement: bringing bio-functionality to meshes. Adv Healthc Mater 4(12):1763–1789. https://doi.org/10.1002/adhm.201500201
doi: 10.1002/adhm.201500201 pubmed: 26111309
D'Este M, Alini M, Eglin D (2012) Single step synthesis and characterization of thermoresponsive hyaluronan hydrogels. Carbohydr Polym 90(3):1378–1385. https://doi.org/10.1016/j.carbpol.2012.07.007
doi: 10.1016/j.carbpol.2012.07.007 pubmed: 22939354
Ter Boo GA, Arens D, Metsemakers WJ, Zeiter S, Richards RG, Grijpma DW et al (2016) Injectable gentamicin-loaded thermo-responsive hyaluronic acid derivative prevents infection in a rabbit model. Acta Biomater 43:185–194. https://doi.org/10.1016/j.actbio.2016.07.029
doi: 10.1016/j.actbio.2016.07.029 pubmed: 27435965
Perez-Kohler B, Benito-Martinez S, Rodriguez M, Garcia-Moreno F, Pascual G, Bellon JM (2019) Experimental study on the use of a chlorhexidine-loaded carboxymethylcellulose gel as antibacterial coating for hernia repair meshes. Hernia. https://doi.org/10.1007/s10029-019-01917-9
doi: 10.1007/s10029-019-01917-9 pubmed: 31781966
Wiegering A, Sinha B, Spor L, Klinge U, Steger U, Germer CT et al (2014) Gentamicin for prevention of intraoperative mesh contamination: demonstration of high bactericide effect (in vitro) and low systemic bioavailability (in vivo). Hernia 18(5):691–700. https://doi.org/10.1007/s10029-014-1293-x
doi: 10.1007/s10029-014-1293-x pubmed: 25112382
Guillaume O, Garric X, Lavigne JP, Van Den Berghe H, Coudane J (2012) Multilayer, degradable coating as a carrier for the sustained release of antibiotics: preparation and antimicrobial efficacy in vitro. J Control Release 162(3):492–501. https://doi.org/10.1016/j.jconrel.2012.08.003
doi: 10.1016/j.jconrel.2012.08.003 pubmed: 22902589
Majumder A, Scott JR, Novitsky YW (2016) Evaluation of the antimicrobial efficacy of a novel rifampin/minocycline-coated, noncrosslinked porcine acellular dermal matrix compared with uncoated scaffolds for soft tissue repair. Surg Innov 23(5):442–455. https://doi.org/10.1177/1553350616656280
doi: 10.1177/1553350616656280 pubmed: 27354551
Sadava EE, Krpata DM, Gao Y, Novitsky YW, Rosen MJ (2013) Does presoaking synthetic mesh in antibiotic solution reduce mesh infections? An experimental study. J Gastrointest Surg 17(3):562–568. https://doi.org/10.1007/s11605-012-2099-8
doi: 10.1007/s11605-012-2099-8 pubmed: 23212529
Schmidt K, Estes C, McLaren A, Spangehl MJ (2018) Chlorhexidine antiseptic irrigation eradicates staphylococcus epidermidis from biofilm: an in vitro study. Clin Orthop Relat Res 476(3):648–653. https://doi.org/10.1007/s11999.0000000000000052
doi: 10.1007/s11999.0000000000000052 pubmed: 29443852 pmcid: 6260035
Guillaume O, Lavigne JP, Lefranc O, Nottelet B, Coudane J, Garric X (2011) New antibiotic-eluting mesh used for soft tissue reinforcement. Acta Biomater 7(9):3390–3397. https://doi.org/10.1016/j.actbio.2011.05.009
doi: 10.1016/j.actbio.2011.05.009 pubmed: 21621016
Stern R, Jedrzejas MJ (2006) Hyaluronidases: their genomics, structures, and mechanisms of action. Chem Rev 106(3):818–839. https://doi.org/10.1021/cr050247k
doi: 10.1021/cr050247k pubmed: 16522010 pmcid: 2547145
Guillaume O, Perez Kohler B, Fortelny R, Redl H, Moriarty F, Richards RG et al (2018) A critical review of the in vitro and in vivo models for the evaluation of anti-infective meshes. Hernia 22(6):961–974. https://doi.org/10.1007/s10029-018-1807-z
doi: 10.1007/s10029-018-1807-z pubmed: 30168006
Ter Boo GJ, Schmid T, Zderic I, Nehrbass D, Camenisch K, Richards RG et al (2018) Local application of a gentamicin-loaded thermo-responsive hydrogel allows for fracture healing upon clearance of a high Staphylococcus aureus load in a rabbit model. Eur Cell Mater 35:151–164. https://doi.org/10.22203/eCM.v035a11
doi: 10.22203/eCM.v035a11 pubmed: 29498410
Drago L, Boot W, Dimas K, Malizos K, Hansch GM, Stuyck J et al (2014) Does implant coating with antibacterial-loaded hydrogel reduce bacterial colonization and biofilm formation in vitro? Clin Orthop Relat Res 472(11):3311–3323. https://doi.org/10.1007/s11999-014-3558-1
doi: 10.1007/s11999-014-3558-1 pubmed: 24622801 pmcid: 4182393
Malizos K, Blauth M, Danita A, Capuano N, Mezzoprete R, Logoluso N et al (2017) Fast-resorbable antibiotic-loaded hydrogel coating to reduce post-surgical infection after internal osteosynthesis: a multicenter randomized controlled trial. J Orthop Traumatol 18(2):159–169. https://doi.org/10.1007/s10195-017-0442-2
doi: 10.1007/s10195-017-0442-2 pubmed: 28155060 pmcid: 5429256
Romano CL, De Vecchi E, Bortolin M, Morelli I, Drago L (2017) Hyaluronic acid and its composites as a local antimicrobial/antiadhesive barrier. J Bone Jt Infect 2(1):63–72. https://doi.org/10.7150/jbji.17705
doi: 10.7150/jbji.17705 pubmed: 28529865 pmcid: 5423572

Auteurs

B Pérez-Köhler (B)

Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Madrid, Spain.
Biomedical Networking Research Centre On Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain.

F Linardi (F)

AO Research Institute Davos, 7270, Davos, Switzerland.

G Pascual (G)

Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Madrid, Spain.
Biomedical Networking Research Centre On Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain.

J M Bellón (JM)

Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Madrid, Spain.
Biomedical Networking Research Centre On Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain.

D Eglin (D)

AO Research Institute Davos, 7270, Davos, Switzerland.

O Guillaume (O)

AO Research Institute Davos, 7270, Davos, Switzerland. olivier.guillaume@tuwien.ac.at.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH