Using the Radiosensitivity Index (RSI) to Predict Pelvic Failure in Endometrial Cancer Treated With Adjuvant Radiation Therapy.
Adult
Aged
Aged, 80 and over
Endometrial Neoplasms
/ genetics
Female
Gene Expression Profiling
Humans
Hysterectomy
/ methods
Lymph Node Excision
/ statistics & numerical data
Middle Aged
Multivariate Analysis
Neoplasm Recurrence, Local
/ genetics
Pelvic Neoplasms
/ genetics
Phenotype
Progression-Free Survival
Radiation Tolerance
/ genetics
Radiotherapy, Adjuvant
/ adverse effects
Journal
International journal of radiation oncology, biology, physics
ISSN: 1879-355X
Titre abrégé: Int J Radiat Oncol Biol Phys
Pays: United States
ID NLM: 7603616
Informations de publication
Date de publication:
01 03 2020
01 03 2020
Historique:
received:
25
09
2019
revised:
20
10
2019
accepted:
06
11
2019
pubmed:
24
11
2019
medline:
15
2
2020
entrez:
24
11
2019
Statut:
ppublish
Résumé
Variability exists in the adjuvant treatment for endometrial cancer (EC) based on surgical pathology and institutional preference. The radiosensitivity index (RSI) is a previously validated multigene expression index that estimates tumor radiosensitivity. We evaluate RSI as a genomic predictor for pelvic failure (PF) in EC patients treated with adjuvant radiation therapy (RT). Using our institutional tissue biorepository, we identified EC patients treated between January 1999 and April 2011 with primarily endometrioid histology (n = 176; 86%) who received various adjuvant therapies. The RSI 10-gene signature was calculated for each sample using the previously published algorithm. Radiophenotype was determined using the previously identified cutpoint where RSI ≥ 0.375 denotes radioresistance (RR) and RSI < 0.375 describes radiosensitivity. A total of 204 patients were identified, of which 83 (41%) were treated with adjuvant RT. Median follow-up was 38.5 months. All patients underwent hysterectomy with bilateral salpingo-oophorectomy with the majority undergoing lymph node dissection (n = 181; 88%). In patients treated with radiation, RR tumors were more likely to experience PF (3-year pelvic control 84% vs 100%; P = .02) with worse PF-free survival (PFFS) (3-year PFFS 65% vs 89%; P = .04). Furthermore, in the patients who did not receive RT, there was no difference in PF (P = .87) or PFFS (P = .57) between the RR/radiosensitive tumors. On multivariable analysis, factors that continued to predict for PF included the RR phenotype (hazard ratio [HR], 12.2; P = .003), lymph node involvement (HR, 4.4; P = .02), and serosal or adnexal involvement (HR, 5.3; P = .01). On multivariable analysis, RSI was found to be a significant predictor of PF in patients treated with adjuvant RT. We propose using RSI to predict which patients are at higher risk for failing in the pelvis and may be candidates for treatment escalation in the adjuvant setting.
Identifiants
pubmed: 31759077
pii: S0360-3016(19)34042-8
doi: 10.1016/j.ijrobp.2019.11.013
pmc: PMC7050205
mid: NIHMS1545499
pii:
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
496-502Subventions
Organisme : NCI NIH HHS
ID : R21 CA101355
Pays : United States
Organisme : NCI NIH HHS
ID : R21 CA135620
Pays : United States
Informations de copyright
Copyright © 2019 Elsevier Inc. All rights reserved.
Références
J Thorac Oncol. 2018 Aug;13(8):1121-1127
pubmed: 29733909
Int J Radiat Oncol Biol Phys. 2011 Nov 15;81(4):e631-8
pubmed: 21640520
Clin Cancer Res. 2012 Sep 15;18(18):5134-43
pubmed: 22832933
Int J Radiat Oncol Biol Phys. 2015 Nov 15;93(4):797-809
pubmed: 26530748
Lancet Oncol. 2018 Mar;19(3):295-309
pubmed: 29449189
Radiother Oncol. 2015 Oct;117(1):159-64
pubmed: 26235848
Gynecol Oncol. 2018 Jun;149(3):476-483
pubmed: 29681461
Int J Gynecol Cancer. 2016 Feb;26(2):341-7
pubmed: 26569061
Int J Gynecol Cancer. 2013 May;23(4):592-7
pubmed: 23615570
Cancer Res. 2005 Aug 15;65(16):7169-76
pubmed: 16103067
Int J Radiat Oncol Biol Phys. 2015 Jul 15;92(4):837-42
pubmed: 25838188
Gynecol Oncol. 2019 May;153(2):335-342
pubmed: 30827726
Br J Cancer. 2018 Oct;119(9):1067-1074
pubmed: 30356126
Lancet. 2010 Mar 6;375(9717):816-23
pubmed: 20206777
Strahlenther Onkol. 2019 Oct;195(10):902-912
pubmed: 30997541
Cancer J. 2011 Nov-Dec;17(6):528-36
pubmed: 22157297
Lancet Oncol. 2019 Sep;20(9):1273-1285
pubmed: 31345626
Lancet. 2012 Apr 7;379(9823):1352-60
pubmed: 22444602
CA Cancer J Clin. 2019 Jan;69(1):7-34
pubmed: 30620402
Oncotarget. 2015 Oct 27;6(33):34414-22
pubmed: 26451615
Clin Cancer Res. 2016 Aug 15;22(16):4215-24
pubmed: 27006490
Lancet. 2000 Apr 22;355(9213):1404-11
pubmed: 10791524
Lancet. 2009 Jan 10;373(9658):137-46
pubmed: 19070891
Clin Cancer Res. 2017 Dec 1;23(23):7232-7241
pubmed: 28939739
Int J Radiat Oncol Biol Phys. 2009 Oct 1;75(2):497-505
pubmed: 19735874
Int J Gynecol Cancer. 2015 Oct;25(8):1526-33
pubmed: 26207785
Gynecol Oncol. 2018 Feb;148(2):403-413
pubmed: 29150143
J Clin Oncol. 2018 Aug 20;36(24):2538-2544
pubmed: 29989857
Int J Radiat Oncol Biol Phys. 2009 Oct 1;75(2):489-96
pubmed: 19735873
BMC Bioinformatics. 2013 May 07;14:153
pubmed: 23647742
Clin Cancer Res. 2019 Feb 1;25(3):1087-1097
pubmed: 30413523
Int J Radiat Oncol Biol Phys. 2015 Nov 1;93(3):631-8
pubmed: 26461005
Lancet Oncol. 2017 Feb;18(2):202-211
pubmed: 27993569
Gynecol Oncol. 2018 Oct;151(1):69-75
pubmed: 30078506