Colon cancer therapy by focusing on colon cancer stem cells and their tumor microenvironment.
colon cancer stem cells
colorectal cancer
combination therapy
complex interaction
signaling pathways
tumor microenvironment
Journal
Journal of cellular physiology
ISSN: 1097-4652
Titre abrégé: J Cell Physiol
Pays: United States
ID NLM: 0050222
Informations de publication
Date de publication:
05 2020
05 2020
Historique:
received:
27
06
2019
accepted:
30
09
2019
pubmed:
28
10
2019
medline:
10
3
2021
entrez:
25
10
2019
Statut:
ppublish
Résumé
Despite many advances and optimization in colon cancer treatment, tumor recurrence and metastases make the development of new therapies necessary. Colon cancer stem cells (CCSCs) are considered as the main triggering factor of cancer progression, recurrence, and metastasis. CCSCs as a result of accumulated genetic and epigenetic alterations and also complex interconnection with the tumor microenvironment (TME) can evolve and convert to full malignant cells. Mounting evidence suggests that in cancer therapy both CCSCs and non-CCSCs in TME have to be regarded to break through the limitation of current therapies. In this regard, stem cell capabilities of some non-CCSCs may arise inside the TME condition. Therefore, a deep knowledge of regulatory mechanisms, heterogeneity, specific markers, and signaling pathways of CCSCs and their interconnection with TME components is needed to improve the treatment of colorectal cancer and the patient's life quality. In this review, we address current different targeted therapeutic options that target cell surface markers and signaling pathways of CCSCs and other components of TME. Current challenges and future perspectives of colon cancer personalized therapy are also provided here. Taken together, based on the deep understanding of biology of CCSCs and using three-dimensional culture technologies, it can be possible to reach successful colon cancer eradication and improvise combination targeted therapies against CCSCs and TME.
Substances chimiques
Biomarkers, Tumor
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
4153-4166Informations de copyright
© 2019 Wiley Periodicals, Inc.
Références
Abidi, A. (2014). Hedgehog signaling pathway: A novel target for cancer therapy: Vismodegib, a promising therapeutic option in treatment of basal cell carcinomas. Indian Journal of Pharmacology, 46, 3-12.
Aguilera, O., Fraga, M. F., Ballestar, E., Paz, M. F., Herranz, M., Espada, J., … González-Sancho, J. M. (2006). Epigenetic inactivation of the Wnt antagonist DICKKOPF-1 (DKK-1) gene in human colorectal cancer. Oncogene, 25, 4116-4121.
Ahmadi, A., Najafi, M., Farhood, B., & Mortezaee, K. (2019). Transforming growth factor-β signaling: Tumorigenesis and targeting for cancer therapy. Journal of Cellular Physiology, 234(8), 12173-12187.
Akbari, A., Amanpour, S., Muhammadnejad, S., Ghahremani, M. H., Ghaffari, S. H., Dehpour, A. R., … Heidari, M. (2014). Evaluation of antitumor activity of a TGF-beta receptor I inhibitor (SD-208) on human colon adenocarcinoma. DARU Journal of Pharmaceutical Sciences, 22, 47.
Akiyoshi, T., Nakamura, M., Yanai, K., Nagai, S., Wada, J., Koga, K., … Katano, M. (2008). Gamma-secretase inhibitors enhance taxane-induced mitotic arrest and apoptosis in colon cancer cells. Gastroenterology, 134, 131-144.
Albini, A., Bruno, A., Gallo, C., Pajardi, G., Noonan, D. M., & Dallaglio, K. (2015). Cancer stem cells and the tumor microenvironment: Interplay in tumor heterogeneity. Connective Tissue Research, 56, 414-425.
Amado, N., Predes, D., Moreno, M., Carvalho, I., Mendes, F., & Abreu, J. (2014). Flavonoids and Wnt/β-catenin signaling: Potential role in colorectal cancer therapies. International Journal of Molecular Sciences, 15, 12094-12106.
Azer, S. A. (2013). Overview of molecular pathways in inflammatory bowel disease associated with colorectal cancer development. European Journal of Gastroenterology & Hepatology, 25, 271-281.
Basu, S., Haase, G., & Ben-Ze'ev, A. (2016). Wnt signaling in cancer stem cells and colon cancer metastasis. F1000Research, 5, 699.
Batlle, E., & Clevers, H. (2017). Cancer stem cells revisited. Nature Medicine, 23(10), 1124-1134.
Batsaikhan, B. E., Yoshikawa, K., Kurita, N., Iwata, T., Takasu, C., Kashihara, H., & Shimada, M. (2014). Cyclopamine decreased the expression of Sonic Hedgehog and its downstream genes in colon cancer stem cells. Anticancer Research, 34, 6339-6344.
Becht, E., de Reyniès, A., Giraldo, N. A., Pilati, C., Buttard, B., Lacroix, L., … Fridman, W. H. (2016). Immune and stromal classification of colorectal cancer is associated with molecular subtypes and relevant for precision immunotherapy. Clinical Cancer Research, 22, 4057-4066.
Bellam, N., & Pasche, B. (2010). TGF-β signaling alterations and colon cancer. Cancer Treatment and Research, 155, 85-103.
Bhome, R., Mellone, M., Emo, K., Thomas, G. J., Sayan, A. E., & Mirnezami, A. H. (2018). The colorectal cancer microenvironment: Strategies for studying the role of cancer-associated fibroblasts. Methods in Molecular Biology, 1765, 87-98.
Borralho, P. M., Kren, B. T., Castro, R. E., Moreira da Silva, I. B., Steer, C. J., & Rodrigues, C. M. P. (2009). MicroRNA-143 reduces viability and increases sensitivity to 5-fluorouracil in HCT116 human colorectal cancer cells. The FEBS Journal, 276, 6689-6700.
Brennen, W. N., Rosen, D. M., Wang, H., Isaacs, J. T., & Denmeade, S. R. (2012). Targeting carcinoma-associated fibroblasts within the tumor stroma with a fibroblast activation protein-activated prodrug. Journal of the National Cancer Institute, 104, 1320-1334.
Bruno, E., Horrigan, S. K., Van Den Berg, D., Rozler, E., Fitting, P. R., Moss, S. T., … Hoffman, R. (1998). The Smad5 gene is involved in the intracellular signaling pathways that mediate the inhibitory effects of transforming growth factor-beta on human hematopoiesis. Blood, 91, 1917-1923.
Calon, A., Espinet, E., Palomo-Ponce, S., Tauriello, D. V. F., Iglesias, M., Céspedes, M. V., … Batlle, E. (2012). Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell, 22, 571-584.
Carnero, A., & Lleonart, M. (2016). The hypoxic microenvironment: A determinant of cancer stem cell evolution. BioEssays, 38(Suppl 1), S65-S74.
Chai, H., Liu, M., Tian, R., Li, X., & Tang, H. (2011). miR-20a targets BNIP2 and contributes chemotherapeutic resistance in colorectal adenocarcinoma SW480 and SW620 cell lines. Acta Biochimica et Biophysica Sinica, 43, 217-225.
Chen, Y., Gao, D., Liu, H., Lin, S., & Jiang, Y. (2015). Drug cytotoxicity and signaling pathway analysis with three-dimensional tumor spheroids in a microwell-based microfluidic chip for drug screening. Analytica Chimica Acta, 898, 85-92.
Cherciu, I., Bărbălan, A., Pirici, D., Mărgăritescu, C., & Săftoiu, A. (2014). Stem cells, colorectal cancer and cancer stem cell markers correlations. Current Health Sciences Journal, 40, 153-161.
Colangelo, T., Polcaro, G., Muccillo, L., D'Agostino, G., Rosato, V., Ziccardi, P., … Colantuoni, V. (2017). Friend or foe? The tumour microenvironment dilemma in colorectal cancer. Biochimica et Biophysica Acta-Reviews on Cancer, 1867, 1-18.
Csermely, P., Hódsági, J., Korcsmáros, T., Módos, D., Perez-Lopez, Á. R., Szalay, K., … Zhang, X. S. (2015). Cancer stem cells display extremely large evolvability: Alternating plastic and rigid networks as a potential Mechanism. Seminars in Cancer Biology, 30, 42-51.
Cui, S., & Chang, P. Y. (2016). Current understanding concerning intestinal stem cells. World Journal of Gastroenterology, 22, 7099-7110.
Devarasetty, M., Skardal, A., Cowdrick, K., Marini, F., & Soker, S. (2017). Bioengineered submucosal organoids for in vitro modeling of colorectal cancer. Tissue Engineering Part A, 23, 1026-1041.
Di Franco, S., Mancuso, P., Benfante, A., Spina, M., Iovino, F., Dieli, F., … Todaro, M. (2011). Colon cancer stem cells: Bench-to-bedside-New therapeutical approaches in clinical oncology for disease breakdown. Cancers, 3, 1957-1974.
Du, L., Wang, H., He, L., Zhang, J., Ni, B., Wang, X., … Chen, Q. (2008). CD44 is of functional importance for colorectal cancer stem cells. Clinical Cancer Research, 14, 6751-6760.
Eguchi, M., Nguyen, C., Lee, S., & Kahn, M. (2005). ICG-001, a novel small molecule regulator of TCF/beta-catenin transcription. Medicinal Chemistry, 1, 467-472.
Elwood, P. C., Morgan, G., Pickering, J. E., Galante, J., Weightman, A. L., Morris, D., … Dolwani, S. (2016). Aspirin in the treatment of cancer: Reductions in metastatic spread and in mortality: A systematic review and meta- analyses of published studies. PLOS One, 11, e0152402.
Fang, L., Zhu, Q., Neuenschwander, M., Specker, E., Wulf-Goldenberg, A., Weis, W. I., … Birchmeier, W. (2016). A small-molecule antagonist of the β-catenin/TCF4 interaction blocks the self-renewal of cancer stem cells and suppresses tumorigenesis. Cancer Research, 76, 891-901.
Feldmann, G., Dhara, S., Fendrich, V., Bedja, D., Beaty, R., Mullendore, M., … Maitra, A. (2007). Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: A new paradigm for combination therapy in solid cancers. Cancer Research, 67, 2187-2196.
Femia, A. P., Dolara, P., Salvadori, M., & Caderni, G. (2013). Expression of LGR-5, MSI-1 and DCAMKL-1, putative stem cell markers, in the early phases of 1,2-dimethylhydrazine-induced rat colon carcinogenesis: Correlation with nuclear β-catenin. BMC Cancer, 13, 48.
Gaelzer, M. M., Santos, M. S., Coelho, B. P., de Quadros, A. H., Simão, F., Usach, V., … Salbego, C. G. (2017). Hypoxic and reoxygenated microenvironment: Stemness and differentiation state in glioblastoma. Molecular Neurobiology, 54(8), 6261-6272.
Glumac, P. M., & LeBeau, A. M. (2018). The role of CD133 in cancer: A concise review. Clinical and Translational Medicine, 7, 18.
Goldman, J., Eckhardt, S. G., Borad, M. J., Curtis, K. K., Hidalgo, M., Calvo, E., … Bowles, D. W. (2015). Phase I dose-escalation trial of the oral investigational Hedgehog signaling pathway inhibitor TAK-441 in patients with advanced solid tumors. Clinical Cancer Research, 21, 1002-1009.
Guinney, J., Dienstmann, R., Wang, X., de Reyniès, A., Schlicker, A., Soneson, C., … Tejpar, S. (2015). The consensus molecular subtypes of colorectal cancer. Nature Medicine, 21, 1350-1356.
Guo, Q., Grimmig, T., Gonzalez, G., Giobbie-Hurder, A., Berg, G., Carr, N., … Frank, N. Y. (2018). ATP-binding cassette member B5 (ABCB5) promotes tumor cell invasiveness in human colorectal cancer. Journal of Biological Chemistry, 293, 11166-11178.
Hatano, Y., Fukuda, S., Hisamatsu, K., Hirata, A., Hara, A., & Tomita, H. (2017). Multifaceted interpretation of colon cancer stem cells. International Journal of Molecular Sciences, 18, 1446.
Hayashi, I., Takatori, S., Urano, Y., Miyake, Y., Takagi, J., Sakata-Yanagimoto, M., … Iwatsubo, T. (2012). Neutralization of the γ-secretase activity by monoclonal antibody against extracellular domain of nicastrin. Oncogene, 31, 787-798.
Hirsch, D., & Ried, T. (2016). Targeting colorectal cancer (stem-like) cells using LGR5 directed antibody drug conjugates. Annals of Translational Medicine, 4, 508.
Holah, N. S., Aiad, H. A., Asaad, N. Y., Elkhouly, E. A., & Lasheen, A. G. (2017). Evaluation of the role of ALDH1 as cancer stem cell marker in colorectal carcinoma: An immunohistochemical study. Journal of Clinical and Diagnostic Research, 11, 17.
Huang, Z., Huang, S., Wang, Q., Liang, L., Ni, S., Wang, L., … Du, X. (2011). MicroRNA-95 promotes cell proliferation and targets sorting Nexin 1 in human colorectal carcinoma. Cancer Research, 71, 2582-2589.
Ibrahim, A. F., Weirauch, U., Thomas, M., Grunweller, A., Hartmann, R. K., & Aigner, A. (2011). MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma. Cancer Research, 71, 5214-5224.
Iovino, F., Meraviglia, S., Spina, M., Orlando, V., Saladino, V., Dieli, F., … Todaro, M. (2011). Immunotherapy targeting colon cancer stem cells. Immunotherapy, 3, 97-106.
Jing, F., Kim, H. J., Kim, C. H., Kim, Y. J., Lee, J. H., & Kim, H. R. (2015). Colon cancer stem cell markers CD44 and CD133 in patients with colorectal cancer and synchronous hepatic metastases. International Journal of Oncology, 46, 1582-1588.
Johnson, J. L., Rupasinghe, S. G., Stefani, F., Schuler, M. A., & Gonzalez de Mejia, E. (2011). Citrus flavonoids luteolin, apigenin, and quercetin inhibit glycogen synthase kinase-3β enzymatic activity by lowering the interaction energy within the binding cavity. Journal of Medicinal Food, 14, 325-333.
Jung, J., Yeom, C., Choi, Y. S., Kim, S., Lee, E., Park, M. J., … Chang, S. (2015). Simultaneous inhibition of multiple oncogenic miRNAs by a multi-potent microRNA sponge. Oncotarget, 6, 20370-20387.
Kang, M. J., Hong, Y. S., Kim, K., Kim, S. Y., Baek, J. Y., Ryu, M. H., … Kim, T. W. (2012). Biweekly cetuximab plus irinotecan as second-line chemotherapy for patients with irinotecan-refractory and KRAS wild-type metastatic colorectal cancer according to epidermal growth factor receptor expression status. Investigational New Drugs, 30, 1607-1613.
Karaayvaz, M., Zhai, H., & Ju, J. (2013). miR-129 promotes apoptosis and enhances chemosensitivity to 5-fluorouracil in colorectal cancer. Cell Death & Disease, 4, e659.
Kashaninejad, N., Nikmaneshi, M., Moghadas, H., Kiyoumarsi Oskouei, A., Rismanian, M., Barisam, M., … Firoozabadi, B. (2016). Organ-tumor-on-a-chip for chemosensitivity assay: A critical review. Micromachines, 7, 130.
Katoh, M. (2017). Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity. International Journal of Oncology, 51, 1357-1369.
Keating, G. M., & Santoro, A. (2009). Sorafenib: A review of its use in advanced hepatocellular carcinoma. Drugs, 69, 223-240.
Kim, E. R., & Chang, D. K. (2014). Colorectal cancer in inflammatory bowel disease: The risk, pathogenesis, prevention and diagnosis. World Journal of Gastroenterology, 20, 9872-9881.
Kim, H., Lin, Q., Glazer, P. M., & Yun, Z. (2018). The hypoxic tumor microenvironment in vivo selects the cancer stem cell fate of breast cancer cells. Breast Cancer Research, 20(1), 16.
Kim, J., Moon, M., Kim, D., Heo, S., & Jeong, Y. (2018). Hyaluronic acid-based nanomaterials for cancer therapy. Polymers, 10, 1133.
Kozovska, Z., Gabrisova, V., & Kucerova, L. (2014). Colon cancer: Cancer stem cells markers, drug resistance and treatment. Biomedicine & Pharmacotherapy, 68, 911-916.
Kumar, S., Raina, K., Agarwal, C., & Agarwal, R. (2014). Silibinin strongly inhibits the growth kinetics of colon cancer stem cell-enriched spheroids by modulating interleukin 4/6-mediated survival signals. Oncotarget, 5, 4972-4989.
Le, P. N., McDermott, J. D., & Jimeno, A. (2015). Targeting the Wnt pathway in human cancers: Therapeutic targeting with a focus on OMP-54F28. Pharmacology & Therapeutics, 146, 1-11.
Leng, Z., Xia, Q., Chen, J., Li, Y., Xu, J., Zhao, E., … Dong, J. (2018). Lgr5+CD44+EpCAM+ strictly defines cancer stem cells in human colorectal cancer. Cellular Physiology and Biochemistry, 46, 860-872.
Li, Z., Hassan, M. Q., Volinia, S., van Wijnen, A. J., Stein, J. L., Croce, C. M., … Stein, G. S. (2008). A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proceedings of the National Academy of Sciences of the United States of America, 105, 13906-13911.
Li, X., Li, X., Liao, D., Wang, X., Wu, Z., Nie, J., … Han, W. (2015). Elevated microRNA-23a expression enhances the chemoresistance of colorectal cancer cells with microsatellite instability to 5-fluorouracil by directly targeting ABCF1. Current Protein & Peptide Science, 16, 301-309.
Li, H., Xu, F., Li, S., Zhong, A., Meng, X., & Lai, M. (2016). The tumor microenvironment: An irreplaceable element of tumor budding and epithelial-mesenchymal transition-mediated cancer metastasis. Cell Adhesion & Migration, 10(4), 434-446.
Li, Y., Zeng, H., Xu, R. H., Liu, B., & Li, Z. (2009). Vaccination with human pluripotent stem cells generates a broad spectrum of immunological and clinical responses against colon cancer. Stem Cells, 27, 3103-3111.
Lundberg, I. V., Edin, S., Eklöf, V., Öberg, Å., Palmqvist, R., & Wikberg, M. L. (2016). SOX2 expression is associated with a cancer stem cell state and down-regulation of CDX2 in colorectal cancer. BMC Cancer, 16, 471.
Luo, Y., Yu, S. Y., Chen, J. J., Qin, J., Qiu, Y. E., Zhong, M., & Chen, M. (2018). MiR-27b directly targets Rab3D to inhibit the malignant phenotype in colorectal cancer. Oncotarget, 9, 3830-3841.
Magdeldin, T., López-Dávila, V., Villemant, C., Cameron, G., Drake, R., Cheema, U., & Loizidou, M. (2014). The efficacy of cetuximab in a tissue-engineered three-dimensional in vitro model of colorectal cancer. Journal of Tissue Engineering, 5, 2041731414544183.
Maier, T. J., Janssen, A., Schmidt, R., Geisslinger, G., & Grösch, S. (2005). Targeting the beta-catenin/APC pathway: A novel mechanism to explain the cyclooxygenase-2-independent anticarcinogenic effects of celecoxib in human colon carcinoma cells. The FASEB Journal, 19, 1353-1355.
Makena, M. R., Ranjan, A., Thirumala, V., & Reddy, A. P. (2018). Cancer stem cells: Road to therapeutic resistance and strategies to overcome resistance. Biochimica et Biophysica Acta-Molecular Basis of Disease, S0925-4439, 30476-30479.
Meacham, C. E., & Morrison, S. J. (2013). Tumour heterogeneity and cancer cell plasticity. Nature, 501(7467), 328-337.
Miyamoto, S., Nakanishi, M., & Rosenberg, D. W. (2013). Suppression of colon carcinogenesis by targeting Notch signaling. Carcinogenesis, 34, 2415-2423.
Mortezaee, K., Najafi, M., Farhood, B., Ahmadi, A., Potes, Y., Shabeeb, D., & Musa, A. E. (2019). Modulation of apoptosis by melatonin for improving cancer treatment efficiency: An updated review. Life Sciences, 228, 228-241.
Mortezaee, K., Najafi, M., Farhood, B., Ahmadi, A., Shabeeb, D., & Musa, A. E. (2019). NF-κB targeting for overcoming tumor resistance and normal tissues toxicity. Journal of Cellular Physiology, 234(10), 17187-17204.
Nagel, R., le Sage, C., Diosdado, B., van der Waal, M., Oude Vrielink, J. A. F., Bolijn, A., … Meijer, G. A. (2008). Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Research, 68, 5795-5802.
Najafi, M., Farhood, B., & Mortezaee, K. (2019). Cancer stem cells (CSCs) in cancer progression and therapy. Journal of Cellular Physiology, 234(6), 8381-8395.
Najafi, M., Goradel, N. H., Farhood, B., Salehi, E., Solhjoo, S., Toolee, H., … Mortezaee, K. (2019). Tumor microenvironment: Interactions and therapy. Journal of Cellular Physiology, 234(5), 5700-5721.
Najafi, M., Mortezaee, K., & Ahadi, R. (2019). Cancer stem cell (a)symmetry & plasticity: Tumorigenesis and therapy relevance. Life Sciences, 231, 116520.
Najdi, R., Holcombe, R., & Waterman, M. (2011). Wnt signaling and colon carcinogenesis: Beyond APC. Journal of Carcinogenesis, 10, 5.
Nangia-Makker, P., Yu, Y., Vasudevan, A., Farhana, L., Rajendra, S. G., Levi, E., & Majumdar, A. P. N. (2014). Metformin: A potential therapeutic agent for recurrent colon cancer. PLOS One, 9(1), e84369.
Neuzillet, C., Tijeras-Raballand, A., Cohen, R., Cros, J., Faivre, S., Raymond, E., & de Gramont, A. (2015). Targeting the TGFβ pathway for cancer therapy. Pharmacology & Therapeutics, 147, 22-31.
Nguyen, L. V., Vanner, R., Dirks, P., & Eaves, C. J. (2012). Cancer stem cells: An evolving concept. Nature Reviews Cancer, 12, 133-143.
Nosrati, A., Naghshvar, F., Maleki, I., & Salehi, F. (2016). Cancer stem cells CD133 and CD24 in colorectal cancers in Northern Iran. Gastroenterology and Hepatology From Bed to Bench, 9, 132-139.
Nouraee, N., Van Roosbroeck, K., Vasei, M., Semnani, S., Samaei, N. M., Naghshvar, F., … Mowla, S. J. (2013). Expression, tissue distribution and function of miR-21 in esophageal squamous cell carcinoma. PLOS One, 8(9), e73009.
Osipo, C., Zlobin, A., & Olsauskas-Kuprys, C. (2013). Gamma secretase inhibitors of Notch signaling. OncoTargets and Therapy, 6, 943-955.
Park, J. I., Venteicher, A. S., Hong, J. Y., Choi, J., Jun, S., Shkreli, M., … Artandi, S. E. (2009). Telomerase modulates Wnt signalling by association with target gene chromatin. Nature, 460, 66-72.
Patel, J., Fong, M., & Jagosky, M. (2019). Colorectal cancer biomarkers in the era of personalized medicine. Journal of Personalized Medicine, 9, 3.
Peng, L., & Jiang, D. (2018). Resveratrol eliminates cancer stem cells of osteosarcoma by STAT3 pathway inhibition. PLOS One, 13(10), e0205918.
Piccoli, M., D'Angelo, E., Crotti, S., Sensi, F., Urbani, L., Maghin, E., … Agostini, M. (2018). Decellularized colorectal cancer matrix as bioactive microenvironment for in vitro 3D cancer research. Journal of Cellular Physiology, 233, 5937-5948.
Plaks, V., Kong, N., & Werb, Z. (2015). The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell, 16, 225-238.
Puglisi, M. A., Tesori, V., Lattanzi, W., Gasbarrini, G. B., & Gasbarrini, A. (2013). Colon cancer stem cells: Controversies and perspectives. World Journal of Gastroenterology, 19, 2997-3006.
Qu, Y., Dou, B., Tan, H., Feng, Y., Wang, N., & Wang, D. (2019). Tumor microenvironment-driven non-cell-autonomous resistance to antineoplastic treatment. Molecular Cancer, 18(1), 69.
Ramakrishnan, A. B., & Cadigan, K. M. (2017). Wnt target genes and where to find them. F1000Research, 6, 746.
Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C., & De Maria, R. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445, 111-115.
Sankpal, U. T., Nagaraju, G. P., Gottipolu, S. R., Hurtado, M., Jordan, C. G., Simecka, J. W., … Basha, R. (2016). Combination of tolfenamic acid and curcumin induces colon cancer cell growth inhibition through modulating specific transcription factors and reactive oxygen species. Oncotarget, 7, 3186-3200.
Semenza, G. L. (2016). The hypoxic tumor microenvironment: A driving force for breast cancer progression. Biochimica et Biophysica Acta-Molecular Cell Research, 1863(3), 382-391.
Schetter, A. J., Okayama, H., & Harris, C. C. (2012). The role of microRNAs in colorectal cancer. The Cancer Journal, 18, 244-252.
Senthebane, D. A., Rowe, A., Thomford, N. E., Shipanga, H., Munro, D., Mazeedi, M. A. M. A., & Dzobo, K. (2017). The role of tumor microenvironment in chemoresistance: To survive, keep your enemies closer. International Journal of Molecular Sciences, 18, E1586.
Shafaei, S., Sharbatdaran, M., Kamrani, G., & Khafri, S. (2013). The association between CD166 detection rate and clinicopathologic parameters of patients with colorectal cancer. Caspian Journal of Internal Medicine, 4, 768-772.
Shang, S., Hua, F., & Hu, Z. W. (2017). The regulation of β-catenin activity and function in cancer: Therapeutic opportunities. Oncotarget, 8, 33972-33989.
Shang, Y., Pan, Q., Chen, L., Ye, J., Zhong, X., Li, X., … Wang, R. (2015). Achaete scute-like 2 suppresses CDX2 expression and inhibits intestinal neoplastic epithelial cell differentiation. Oncotarget, 6, 30993-31006.
Sikandar, S. S., Pate, K. T., Anderson, S., Dizon, D., Edwards, R. A., Waterman, M. L., & Lipkin, S. M. (2010). NOTCH signaling is required for formation and self-renewal of tumor-initiating cells and for repression of secretory cell differentiation in colon cancer. Cancer Research, 70, 1469-1478.
Skoda, A. M., Simovic, D., Karin, V., Kardum, V., Vranic, S., & Serman, L. (2018). The role of the Hedgehog signaling pathway in cancer: A comprehensive review. Bosnian Journal of Basic Medical Sciences, 18, 8-20.
Sordillo, P. P., & Helson, L. (2015). Curcumin and cancer stem cells: Curcumin has asymmetrical effects on cancer and normal stem cells. Anticancer Research, 35(2), 599-614.
de Sousa e Melo, F., Kurtova, A. V., Harnoss, J. M., Kljavin, N., Hoeck, J. D., Hung, J., … de Sauvage, F. J. (2017). A distinct role for Lgr5+ stem cells in primary and metastatic colon cancer. Nature, 543, 676-680.
Suman, S., Das, T. P., Ankem, M. K., & Damodaran, C. (2014). Targeting notch signaling in colorectal cancer. Current Colorectal Cancer Reports, 10, 411-416.
Tai, D., Wells, K., Arcaroli, J., Vanderbilt, C., Aisner, D. L., Messersmith, W. A., & Lieu, C. H. (2015). Targeting the WNT signaling pathway in cancer therapeutics. The Oncologist, 20, 1189-1198.
Thiery, J. P., Acloque, H., Huang, R. Y. J., & Nieto, M. A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell, 139, 871-890.
Todaro, M., Alea, M. P., Di Stefano, A. B., Cammareri, P., Vermeulen, L., Iovino, F., … Stassi, G. (2007). Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell, 1, 389-402.
Todaro, M., Francipane, M. G., Medema, J. P., & Stassi, G. (2010). Colon cancer stem cells: Promise of targeted therapy. Gastroenterology, 138, 2151-2162.
Tsang, W. P., Ng, E. K. O., Ng, S. S. M., Jin, H., Yu, J., Sung, J. J. Y., & Kwok, T. T. (2010). Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis, 31, 350-358.
Tseng, J. Y., Yang, C. Y., Yang, S. H., Lin, J. K., Lin, C. H., & Jiang, J. K. (2015). Circulating CD133(+)/ESA(+) cells in colorectal cancer patients. Journal of Surgical Research, 199, 362-370.
Varnat, F., Duquet, A., Malerba, M., Zbinden, M., Mas, C., Gervaz, P., & Ruiz i Altaba, A. (2009). Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO Molecular Medicine, 1, 338-351.
Vermeulen, L., de Sousa e Melo, F., van der Heijden, M., Cameron, K., de Jong, J. H., Borovski, T., … Medema, J. P. (2010). Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nature Cell Biology, 12, 468-476.
Whiteside, T. L. (2008). The tumor microenvironment and its role in promoting tumor growth. Oncogene, 27(45), 5904-5912.
Wiegering, A., Uthe, F. W., Hüttenrauch, M., Mühling, B., Linnebacher, M., Krummenast, F., … Otto, C. (2014). The impact of pyrvinium pamoate on colon cancer cell viability. International Journal of Colorectal Disease, 29, 1189-1198.
Wu, W., Wang, Z., Yang, P., Yang, J., Liang, J., Chen, Y., … Zhou, Y. (2014). MicroRNA-135b regulates metastasis suppressor 1 expression and promotes migration and invasion in colorectal cancer. Molecular and Cellular Biochemistry, 388, 249-259.
Yamamoto, H., & Mori, M. (2016). MicroRNAs as therapeutic targets and colorectal cancer therapeutics. Advances in Experimental Medicine and Biology, 937, 239-247.
Yan, Y., Liu, F., Han, L., Zhao, L., Chen, J., Olopade, O. I., … Wei, M. (2018). HIF-2α promotes conversion to a stem cell phenotype and induces chemoresistance in breast cancer cells by activating Wnt and Notch pathways. Journal of Experimental & Clinical Cancer Research, 37(1), 256.
Yang, X., Xu, X., Zhu, J., Zhang, S., Wu, Y., Wu, Y., … Peng, W. (2016). miR-31 affects colorectal cancer cells by inhibiting autophagy in cancer-associated fibroblasts. Oncotarget, 7, 79617-79628.
Zhan, T., Rindtorff, N., & Boutros, M. (2017). Wnt signaling in cancer. Oncogene, 36, 1461-1473.
Zhang, X., Ai, F., Li, X., Tian, L., Wang, X., Shen, S., & Liu, F. (2017). MicroRNA-34a suppresses colorectal cancer metastasis by regulating Notch signaling. Oncology Letters, 14, 2325-2333.
Zhang, Y., Chen, Z., & Li, J. (2017). The current status of treatment for colorectal cancer in China: A systematic review. Medicine, 96, e8242.
Zhang, H., Tang, J., Li, C., Kong, J., Wang, J., Wu, Y., … Lai, M. (2015). MiR-22 regulates 5-FU sensitivity by inhibiting autophagy and promoting apoptosis in colorectal cancer cells. Cancer Letters, 356, 781-790.
Zhang, Y., Zheng, L., Huang, J., Gao, F., Lin, X., He, L., … Chen, L. (2014). MiR-124 radiosensitizes human colorectal cancer cells by targeting PRRX1. PLOS One, 9, e93917.
Zhao, L., Yu, H., Yi, S., Peng, X., Su, P., Xiao, Z., … Shen, S. (2016). The tumor suppressor miR-138-5p targets PD-L1 in colorectal cancer. Oncotarget, 7, 45370-45384.
Zhao, J., Zhang, Y., & Zhao, G. (2015). Emerging role of microRNA-21 in colorectal cancer. Cancer Biomarkers, 15, 219-226.
Zhou, X., Geng, L., Wang, D., Yi, H., Talmon, G., & Wang, J. (2017). R-Spondin1/LGR5 activates TGFβ signaling and suppresses colon cancer metastasis. Cancer Research, 77, 6589-6602.
Zhou, W., Li, X., Liu, F., Xiao, Z., He, M., Shen, S., & Liu, S. (2010). MiR-135a promotes growth and invasion of colorectal cancer via metastasis suppressor 1 in vitro. Acta Biochimica et Biophysica Sinica, 44, 838-846.
Zhou, Y., Xia, L., Wang, H., Oyang, L., Su, M., Liu, Q., … Cao, D. (2018). Cancer stem cells in progression of colorectal cancer. Oncotarget, 9, 33403-33415.