Epigenomic signatures underpin the axonal regenerative ability of dorsal root ganglia sensory neurons.
Acetylation
Algorithms
Animals
Axons
/ physiology
CCCTC-Binding Factor
/ genetics
Chromatin
/ metabolism
Epigenomics
Female
Ganglia, Spinal
/ injuries
Gene Expression
Histones
/ metabolism
Machine Learning
Male
Mice
Mice, Transgenic
Nerve Regeneration
/ physiology
Sciatic Nerve
/ injuries
Sensory Receptor Cells
/ physiology
Sequence Analysis, RNA
Journal
Nature neuroscience
ISSN: 1546-1726
Titre abrégé: Nat Neurosci
Pays: United States
ID NLM: 9809671
Informations de publication
Date de publication:
11 2019
11 2019
Historique:
received:
05
04
2018
accepted:
07
08
2019
pubmed:
9
10
2019
medline:
1
2
2020
entrez:
9
10
2019
Statut:
ppublish
Résumé
Axonal injury results in regenerative success or failure, depending on whether the axon lies in the peripheral or the CNS, respectively. The present study addresses whether epigenetic signatures in dorsal root ganglia discriminate between regenerative and non-regenerative axonal injury. Chromatin immunoprecipitation for the histone 3 (H3) post-translational modifications H3K9ac, H3K27ac and H3K27me3; an assay for transposase-accessible chromatin; and RNA sequencing were performed in dorsal root ganglia after sciatic nerve or dorsal column axotomy. Distinct histone acetylation and chromatin accessibility signatures correlated with gene expression after peripheral, but not central, axonal injury. DNA-footprinting analyses revealed new transcriptional regulators associated with regenerative ability. Machine-learning algorithms inferred the direction of most of the gene expression changes. Neuronal conditional deletion of the chromatin remodeler CCCTC-binding factor impaired nerve regeneration, implicating chromatin organization in the regenerative competence. Altogether, the present study offers the first epigenomic map providing insight into the transcriptional response to injury and the differential regenerative ability of sensory neurons.
Identifiants
pubmed: 31591560
doi: 10.1038/s41593-019-0490-4
pii: 10.1038/s41593-019-0490-4
doi:
Substances chimiques
CCCTC-Binding Factor
0
Chromatin
0
Ctcf protein, mouse
0
Histones
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1913-1924Subventions
Organisme : Medical Research Council
ID : MC_U120027516
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/T003111/1
Pays : United Kingdom
Organisme : Wellcome Trust
Pays : United Kingdom
Références
Tedeschi, A. Tuning the orchestra: transcriptional pathways controlling axon regeneration. Front. Mol. Neurosci. 4, 60 (2011).
pubmed: 22294979
Kiryu-Seo, S. & Kiyama, H. The nuclear events guiding successful nerve regeneration. Front. Mol. Neurosci. 4, 53 (2011).
pubmed: 22180737
pmcid: 3235624
doi: 10.3389/fnmol.2011.00053
Patodia, S. & Raivich, G. Role of transcription factors in peripheral nerve regeneration. Front. Mol. Neurosci. 5, 8 (2012).
pubmed: 22363260
pmcid: 3277281
doi: 10.3389/fnmol.2012.00008
Ma, T. C. & Willis, D. E. What makes a RAG regeneration associated? Front. Mol. Neurosci. 8, 43 (2015).
pubmed: 26300725
pmcid: 4528284
Baldwin, K. T. & Giger, R. J. Insights into the physiological role of CNS regeneration inhibitors. Front. Mol. Neurosci. 8, 23 (2015).
pubmed: 26113809
pmcid: 4462676
doi: 10.3389/fnmol.2015.00023
Neumann, S. & Woolf, C. J. Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron 23, 83–91 (1999).
doi: 10.1016/S0896-6273(00)80755-2
pubmed: 10402195
Geiman, T. M. & Robertson, K. D. Chromatin remodeling, histone modifications, and DNA methylation-how does it all fit together? J. Cell Biochem. 87, 117–125 (2002).
pubmed: 12244565
doi: 10.1002/jcb.10286
Vignali, M., Hassan, A. H., Neely, K. E. & Workman, J. L. ATP-dependent chromatin-remodeling complexes. Mol. Cell Biol. 20, 1899–1910 (2000).
pubmed: 10688638
pmcid: 110808
doi: 10.1128/MCB.20.6.1899-1910.2000
Gaub, P. et al. The histone acetyltransferase p300 promotes intrinsic axonal regeneration. Brain 134, 2134–2148 (2011).
pubmed: 21705428
doi: 10.1093/brain/awr142
Palmisano, I. & Di Giovanni, S. Advances and limitations of current epigenetic studies investigating mammalian axonal regeneration. Neurotherapy 15, 529–540 (2018).
doi: 10.1007/s13311-018-0636-1
Hutson, T. H. et al. Cbp-dependent histone acetylation mediates axon regeneration induced by environmental enrichment in rodent spinal cord injury models. Sci. Transl. Med. 11, pii: eaaw2064 (2019).
doi: 10.1126/scitranslmed.aaw2064
Hervera, A. et al. PP4-dependent HDAC3 dephosphorylation discriminates between axonal regeneration and regenerative failure. EMBO J. 38, e101032 (2019).
pubmed: 31268609
doi: 10.15252/embj.2018101032
pmcid: 6600644
Oh, Y. M. et al. Epigenetic regulator UHRF1 inactivates REST and growth suppressor gene expression via DNA methylation to promote axon regeneration. Proc. Natl Acad. Sci. USA 115, E12417–E12426 (2018).
pubmed: 30530687
doi: 10.1073/pnas.1812518115
pmcid: 6310844
Finelli, M. J., Wong, J. K. & Zou, H. Epigenetic regulation of sensory axon regeneration after spinal cord injury. J. Neurosci. 33, 19664–19676 (2013).
pubmed: 24336730
pmcid: 3858634
doi: 10.1523/JNEUROSCI.0589-13.2013
Puttagunta, R. et al. PCAF-dependent epigenetic changes promote axonal regeneration in the central nervous system. Nat. Commun. 5, 3527 (2014).
pubmed: 24686445
doi: 10.1038/ncomms4527
Cho, Y., Sloutsky, R., Naegle, K. M. & Cavalli, V. Injury-induced HDAC5 nuclear export is essential for axon regeneration. Cell 155, 894–908 (2013).
pubmed: 24209626
pmcid: 3987749
doi: 10.1016/j.cell.2013.10.004
Weng, Y. L. et al. An intrinsic epigenetic barrier for functional axon regeneration. Neuron 94, 337–346 e336 (2017).
pubmed: 28426967
pmcid: 6007997
doi: 10.1016/j.neuron.2017.03.034
Hervera, A. et al. Reactive oxygen species regulate axonal regeneration through the release of exosomal NADPH oxidase 2 complexes into injured axons. Nat. Cell Biol. 20, 307–319 (2018).
pubmed: 29434374
doi: 10.1038/s41556-018-0039-x
Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).
pubmed: 24097267
pmcid: 3959825
doi: 10.1038/nmeth.2688
Chandran, V. et al. A systems-level analysis of the peripheral nerve intrinsic axonal growth program. Neuron 89, 956–970 (2016).
pubmed: 26898779
pmcid: 4790095
doi: 10.1016/j.neuron.2016.01.034
Tedeschi, A. et al. The calcium channel subunit alpha2delta2 suppresses axon regeneration in the adult CNS. Neuron 92, 419–434 (2016).
pubmed: 27720483
doi: 10.1016/j.neuron.2016.09.026
Li, S. et al. The transcriptional landscape of dorsal root ganglia after sciatic nerve transection. Sci. Rep. 5, 16888 (2015).
pubmed: 26576491
pmcid: 4649668
doi: 10.1038/srep16888
Shen, Y. et al. A map of the cis-regulatory sequences in the mouse genome. Nature 488, 116–120 (2012).
pubmed: 22763441
pmcid: 4041622
doi: 10.1038/nature11243
Yue, F. et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature 515, 355–364 (2014).
pubmed: 25409824
pmcid: 4266106
doi: 10.1038/nature13992
Nord, A. S. et al. Rapid and pervasive changes in genome-wide enhancer usage during mammalian development. Cell 155, 1521–1531 (2013).
pubmed: 24360275
pmcid: 3989111
doi: 10.1016/j.cell.2013.11.033
Baek, S., Goldstein, I. & Hager, G. L. Bivariate genomic footprinting detects changes in transcription factor activity. Cell Rep. 19, 1710–1722 (2017).
pubmed: 28538187
pmcid: 5530758
doi: 10.1016/j.celrep.2017.05.003
Nadeau, S., Hein, P., Fernandes, K. J., Peterson, A. C. & Miller, F. D. A transcriptional role for C/EBP beta in the neuronal response to axonal injury. Mol. Cell. Neurosci. 29, 525–535 (2005).
pubmed: 15936952
doi: 10.1016/j.mcn.2005.04.004
Danzi, M. C. et al. The effect of Jun dimerization on neurite outgrowth and motif binding. Mol. Cell. Neurosci. 92, 114–127 (2018).
pubmed: 30077771
pmcid: 6547139
doi: 10.1016/j.mcn.2018.08.001
Gusmao, E. G., Allhoff, M., Zenke, M. & Costa, I. G. Analysis of computational footprinting methods for DNase sequencing experiments. Nat. Methods 13, 303–309 (2016).
pubmed: 26901649
doi: 10.1038/nmeth.3772
Usoskin, D. et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat. Neurosci. 18, 145–153 (2015).
doi: 10.1038/nn.3881
pubmed: 25420068
Hirayama, T., Tarusawa, E., Yoshimura, Y., Galjart, N. & Yagi, T. CTCF is required for neural development and stochastic expression of clustered Pcdh genes in neurons. Cell Rep. 2, 345–357 (2012).
pubmed: 22854024
doi: 10.1016/j.celrep.2012.06.014
Ong, C. T. & Corces, V. G. CTCF: an architectural protein bridging genome topology and function. Nat. Rev. Genet. 15, 234–246 (2014).
pubmed: 24614316
pmcid: 4610363
doi: 10.1038/nrg3663
Ziebarth, J. D., Bhattacharya, A. & Cui, Y. CTCFBSDB 2.0: a database for CTCF-binding sites and genome organization. Nucleic Acids Res. 41, D188–D194 (2013).
pubmed: 23193294
doi: 10.1093/nar/gks1165
Sams, D. S. et al. Neuronal CTCF Is necessary for basal and experience-dependent gene regulation, memory formation, and genomic structure of BDNF and Arc. Cell Rep. 17, 2418–2430 (2016).
pubmed: 27880914
doi: 10.1016/j.celrep.2016.11.004
Shin, J. E., Geisler, S. & DiAntonio, A. Dynamic regulation of SCG10 in regenerating axons after injury. Exp. Neurol. 252, 1–11 (2014).
pubmed: 24246279
doi: 10.1016/j.expneurol.2013.11.007
Michaelevski, I. et al. Signaling to transcription networks in the neuronal retrograde injury response. Sci. Signal. 3, ra53 (2010).
pubmed: 20628157
pmcid: 3645873
doi: 10.1126/scisignal.2000952
Wang, Y. et al. Gene network revealed involvements of Birc2, Birc3 and Tnfrsf1a in anti-apoptosis of injured peripheral nerves. PloS ONE 7, e43436 (2012).
pubmed: 23028454
pmcid: 3444457
doi: 10.1371/journal.pone.0043436
Geeven, G. et al. LLM3D: a log-linear modeling-based method to predict functional gene regulatory interactions from genome-wide expression data. Nucleic Acids Res. 39, 5313–5327 (2011).
pubmed: 21422075
pmcid: 3141251
doi: 10.1093/nar/gkr139
Li, S. et al. Differential gene expression profiling and biological process analysis in proximal nerve segments after sciatic nerve transection. PloS ONE 8, e57000 (2013).
pubmed: 23437294
pmcid: 3578805
doi: 10.1371/journal.pone.0057000
Wang, Z., Reynolds, A., Kirry, A., Nienhaus, C. & Blackmore, M. G. Overexpression of Sox11 promotes corticospinal tract regeneration after spinal injury while interfering with functional recovery. J. Neurosci. 35, 3139–3145 (2015).
pubmed: 25698749
pmcid: 4331631
doi: 10.1523/JNEUROSCI.2832-14.2015
Mann, R. S. & Affolter, M. Hox proteins meet more partners. Curr. Opin. Genet. Dev. 8, 423–429 (1998).
pubmed: 9729718
doi: 10.1016/S0959-437X(98)80113-5
Philippidou, P. & Dasen, J. S. Hox genes: choreographers in neural development, architects of circuit organization. Neuron 80, 12–34 (2013).
pubmed: 24094100
doi: 10.1016/j.neuron.2013.09.020
De Kumar, B. et al. Dynamic regulation of nanog and stem cell-signaling pathways by Hoxa1 during early neuro-ectodermal differentiation of ES cells. Proc. Natl Acad. Sci. USA 114, 5838–5845 (2017).
pubmed: 28584089
doi: 10.1073/pnas.1610612114
pmcid: 5468655
Zhou, V. W., Goren, A. & Bernstein, B. E. Charting histone modifications and the functional organization of mammalian genomes. Nat. Rev. Genet. 12, 7–18 (2011).
pubmed: 21116306
doi: 10.1038/nrg2905
Loh, Y. E. et al. Comprehensive mapping of 5-hydroxymethylcytosine epigenetic dynamics in axon regeneration. Epigenetics 12, 77–92 (2017).
pubmed: 27918235
doi: 10.1080/15592294.2016.1264560
Zhou, S., Ding, F. & Gu, X. Non-coding RNAs as emerging regulators of neural injury responses and regeneration. Neurosci. Bull. 32, 253–264 (2016).
pubmed: 27037691
pmcid: 5563772
doi: 10.1007/s12264-016-0028-7
Shen, L., Shao, N., Liu, X. & Nestler, E. ngs.plot: quick mining and visualization of next-generation sequencing data by integrating genomic databases. BMC Genom. 15, 284 (2014).
doi: 10.1186/1471-2164-15-284
He, H. H. et al. Refined DNase-seq protocol and data analysis reveals intrinsic bias in transcription factor footprint identification. Nat. Methods 11, 73–78 (2014).
pubmed: 24317252
doi: 10.1038/nmeth.2762
Cruickshank, M., Fenwick, E., Abraham, L. J. & Ulgiati, D. Quantitative differences in chromatin accessibility across regulatory regions can be directly compared in distinct cell-types. Biochem. Biophys. Res. Commun. 367, 349–355 (2008).
pubmed: 18164259
doi: 10.1016/j.bbrc.2007.12.121
Hart, S. N., Therneau, T. M., Zhang, Y., Poland, G. A. & Kocher, J. P. Calculating sample size estimates for RNA sequencing data. J. Comput. Biol. 20, 970–978 (2013).
pubmed: 23961961
pmcid: 3842884
doi: 10.1089/cmb.2012.0283