Epigenomic signatures underpin the axonal regenerative ability of dorsal root ganglia sensory neurons.


Journal

Nature neuroscience
ISSN: 1546-1726
Titre abrégé: Nat Neurosci
Pays: United States
ID NLM: 9809671

Informations de publication

Date de publication:
11 2019
Historique:
received: 05 04 2018
accepted: 07 08 2019
pubmed: 9 10 2019
medline: 1 2 2020
entrez: 9 10 2019
Statut: ppublish

Résumé

Axonal injury results in regenerative success or failure, depending on whether the axon lies in the peripheral or the CNS, respectively. The present study addresses whether epigenetic signatures in dorsal root ganglia discriminate between regenerative and non-regenerative axonal injury. Chromatin immunoprecipitation for the histone 3 (H3) post-translational modifications H3K9ac, H3K27ac and H3K27me3; an assay for transposase-accessible chromatin; and RNA sequencing were performed in dorsal root ganglia after sciatic nerve or dorsal column axotomy. Distinct histone acetylation and chromatin accessibility signatures correlated with gene expression after peripheral, but not central, axonal injury. DNA-footprinting analyses revealed new transcriptional regulators associated with regenerative ability. Machine-learning algorithms inferred the direction of most of the gene expression changes. Neuronal conditional deletion of the chromatin remodeler CCCTC-binding factor impaired nerve regeneration, implicating chromatin organization in the regenerative competence. Altogether, the present study offers the first epigenomic map providing insight into the transcriptional response to injury and the differential regenerative ability of sensory neurons.

Identifiants

pubmed: 31591560
doi: 10.1038/s41593-019-0490-4
pii: 10.1038/s41593-019-0490-4
doi:

Substances chimiques

CCCTC-Binding Factor 0
Chromatin 0
Ctcf protein, mouse 0
Histones 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1913-1924

Subventions

Organisme : Medical Research Council
ID : MC_U120027516
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/T003111/1
Pays : United Kingdom
Organisme : Wellcome Trust
Pays : United Kingdom

Références

Tedeschi, A. Tuning the orchestra: transcriptional pathways controlling axon regeneration. Front. Mol. Neurosci. 4, 60 (2011).
pubmed: 22294979
Kiryu-Seo, S. & Kiyama, H. The nuclear events guiding successful nerve regeneration. Front. Mol. Neurosci. 4, 53 (2011).
pubmed: 22180737 pmcid: 3235624 doi: 10.3389/fnmol.2011.00053
Patodia, S. & Raivich, G. Role of transcription factors in peripheral nerve regeneration. Front. Mol. Neurosci. 5, 8 (2012).
pubmed: 22363260 pmcid: 3277281 doi: 10.3389/fnmol.2012.00008
Ma, T. C. & Willis, D. E. What makes a RAG regeneration associated? Front. Mol. Neurosci. 8, 43 (2015).
pubmed: 26300725 pmcid: 4528284
Baldwin, K. T. & Giger, R. J. Insights into the physiological role of CNS regeneration inhibitors. Front. Mol. Neurosci. 8, 23 (2015).
pubmed: 26113809 pmcid: 4462676 doi: 10.3389/fnmol.2015.00023
Neumann, S. & Woolf, C. J. Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron 23, 83–91 (1999).
doi: 10.1016/S0896-6273(00)80755-2 pubmed: 10402195
Geiman, T. M. & Robertson, K. D. Chromatin remodeling, histone modifications, and DNA methylation-how does it all fit together? J. Cell Biochem. 87, 117–125 (2002).
pubmed: 12244565 doi: 10.1002/jcb.10286
Vignali, M., Hassan, A. H., Neely, K. E. & Workman, J. L. ATP-dependent chromatin-remodeling complexes. Mol. Cell Biol. 20, 1899–1910 (2000).
pubmed: 10688638 pmcid: 110808 doi: 10.1128/MCB.20.6.1899-1910.2000
Gaub, P. et al. The histone acetyltransferase p300 promotes intrinsic axonal regeneration. Brain 134, 2134–2148 (2011).
pubmed: 21705428 doi: 10.1093/brain/awr142
Palmisano, I. & Di Giovanni, S. Advances and limitations of current epigenetic studies investigating mammalian axonal regeneration. Neurotherapy 15, 529–540 (2018).
doi: 10.1007/s13311-018-0636-1
Hutson, T. H. et al. Cbp-dependent histone acetylation mediates axon regeneration induced by environmental enrichment in rodent spinal cord injury models. Sci. Transl. Med. 11, pii: eaaw2064 (2019).
doi: 10.1126/scitranslmed.aaw2064
Hervera, A. et al. PP4-dependent HDAC3 dephosphorylation discriminates between axonal regeneration and regenerative failure. EMBO J. 38, e101032 (2019).
pubmed: 31268609 doi: 10.15252/embj.2018101032 pmcid: 6600644
Oh, Y. M. et al. Epigenetic regulator UHRF1 inactivates REST and growth suppressor gene expression via DNA methylation to promote axon regeneration. Proc. Natl Acad. Sci. USA 115, E12417–E12426 (2018).
pubmed: 30530687 doi: 10.1073/pnas.1812518115 pmcid: 6310844
Finelli, M. J., Wong, J. K. & Zou, H. Epigenetic regulation of sensory axon regeneration after spinal cord injury. J. Neurosci. 33, 19664–19676 (2013).
pubmed: 24336730 pmcid: 3858634 doi: 10.1523/JNEUROSCI.0589-13.2013
Puttagunta, R. et al. PCAF-dependent epigenetic changes promote axonal regeneration in the central nervous system. Nat. Commun. 5, 3527 (2014).
pubmed: 24686445 doi: 10.1038/ncomms4527
Cho, Y., Sloutsky, R., Naegle, K. M. & Cavalli, V. Injury-induced HDAC5 nuclear export is essential for axon regeneration. Cell 155, 894–908 (2013).
pubmed: 24209626 pmcid: 3987749 doi: 10.1016/j.cell.2013.10.004
Weng, Y. L. et al. An intrinsic epigenetic barrier for functional axon regeneration. Neuron 94, 337–346 e336 (2017).
pubmed: 28426967 pmcid: 6007997 doi: 10.1016/j.neuron.2017.03.034
Hervera, A. et al. Reactive oxygen species regulate axonal regeneration through the release of exosomal NADPH oxidase 2 complexes into injured axons. Nat. Cell Biol. 20, 307–319 (2018).
pubmed: 29434374 doi: 10.1038/s41556-018-0039-x
Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).
pubmed: 24097267 pmcid: 3959825 doi: 10.1038/nmeth.2688
Chandran, V. et al. A systems-level analysis of the peripheral nerve intrinsic axonal growth program. Neuron 89, 956–970 (2016).
pubmed: 26898779 pmcid: 4790095 doi: 10.1016/j.neuron.2016.01.034
Tedeschi, A. et al. The calcium channel subunit alpha2delta2 suppresses axon regeneration in the adult CNS. Neuron 92, 419–434 (2016).
pubmed: 27720483 doi: 10.1016/j.neuron.2016.09.026
Li, S. et al. The transcriptional landscape of dorsal root ganglia after sciatic nerve transection. Sci. Rep. 5, 16888 (2015).
pubmed: 26576491 pmcid: 4649668 doi: 10.1038/srep16888
Shen, Y. et al. A map of the cis-regulatory sequences in the mouse genome. Nature 488, 116–120 (2012).
pubmed: 22763441 pmcid: 4041622 doi: 10.1038/nature11243
Yue, F. et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature 515, 355–364 (2014).
pubmed: 25409824 pmcid: 4266106 doi: 10.1038/nature13992
Nord, A. S. et al. Rapid and pervasive changes in genome-wide enhancer usage during mammalian development. Cell 155, 1521–1531 (2013).
pubmed: 24360275 pmcid: 3989111 doi: 10.1016/j.cell.2013.11.033
Baek, S., Goldstein, I. & Hager, G. L. Bivariate genomic footprinting detects changes in transcription factor activity. Cell Rep. 19, 1710–1722 (2017).
pubmed: 28538187 pmcid: 5530758 doi: 10.1016/j.celrep.2017.05.003
Nadeau, S., Hein, P., Fernandes, K. J., Peterson, A. C. & Miller, F. D. A transcriptional role for C/EBP beta in the neuronal response to axonal injury. Mol. Cell. Neurosci. 29, 525–535 (2005).
pubmed: 15936952 doi: 10.1016/j.mcn.2005.04.004
Danzi, M. C. et al. The effect of Jun dimerization on neurite outgrowth and motif binding. Mol. Cell. Neurosci. 92, 114–127 (2018).
pubmed: 30077771 pmcid: 6547139 doi: 10.1016/j.mcn.2018.08.001
Gusmao, E. G., Allhoff, M., Zenke, M. & Costa, I. G. Analysis of computational footprinting methods for DNase sequencing experiments. Nat. Methods 13, 303–309 (2016).
pubmed: 26901649 doi: 10.1038/nmeth.3772
Usoskin, D. et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat. Neurosci. 18, 145–153 (2015).
doi: 10.1038/nn.3881 pubmed: 25420068
Hirayama, T., Tarusawa, E., Yoshimura, Y., Galjart, N. & Yagi, T. CTCF is required for neural development and stochastic expression of clustered Pcdh genes in neurons. Cell Rep. 2, 345–357 (2012).
pubmed: 22854024 doi: 10.1016/j.celrep.2012.06.014
Ong, C. T. & Corces, V. G. CTCF: an architectural protein bridging genome topology and function. Nat. Rev. Genet. 15, 234–246 (2014).
pubmed: 24614316 pmcid: 4610363 doi: 10.1038/nrg3663
Ziebarth, J. D., Bhattacharya, A. & Cui, Y. CTCFBSDB 2.0: a database for CTCF-binding sites and genome organization. Nucleic Acids Res. 41, D188–D194 (2013).
pubmed: 23193294 doi: 10.1093/nar/gks1165
Sams, D. S. et al. Neuronal CTCF Is necessary for basal and experience-dependent gene regulation, memory formation, and genomic structure of BDNF and Arc. Cell Rep. 17, 2418–2430 (2016).
pubmed: 27880914 doi: 10.1016/j.celrep.2016.11.004
Shin, J. E., Geisler, S. & DiAntonio, A. Dynamic regulation of SCG10 in regenerating axons after injury. Exp. Neurol. 252, 1–11 (2014).
pubmed: 24246279 doi: 10.1016/j.expneurol.2013.11.007
Michaelevski, I. et al. Signaling to transcription networks in the neuronal retrograde injury response. Sci. Signal. 3, ra53 (2010).
pubmed: 20628157 pmcid: 3645873 doi: 10.1126/scisignal.2000952
Wang, Y. et al. Gene network revealed involvements of Birc2, Birc3 and Tnfrsf1a in anti-apoptosis of injured peripheral nerves. PloS ONE 7, e43436 (2012).
pubmed: 23028454 pmcid: 3444457 doi: 10.1371/journal.pone.0043436
Geeven, G. et al. LLM3D: a log-linear modeling-based method to predict functional gene regulatory interactions from genome-wide expression data. Nucleic Acids Res. 39, 5313–5327 (2011).
pubmed: 21422075 pmcid: 3141251 doi: 10.1093/nar/gkr139
Li, S. et al. Differential gene expression profiling and biological process analysis in proximal nerve segments after sciatic nerve transection. PloS ONE 8, e57000 (2013).
pubmed: 23437294 pmcid: 3578805 doi: 10.1371/journal.pone.0057000
Wang, Z., Reynolds, A., Kirry, A., Nienhaus, C. & Blackmore, M. G. Overexpression of Sox11 promotes corticospinal tract regeneration after spinal injury while interfering with functional recovery. J. Neurosci. 35, 3139–3145 (2015).
pubmed: 25698749 pmcid: 4331631 doi: 10.1523/JNEUROSCI.2832-14.2015
Mann, R. S. & Affolter, M. Hox proteins meet more partners. Curr. Opin. Genet. Dev. 8, 423–429 (1998).
pubmed: 9729718 doi: 10.1016/S0959-437X(98)80113-5
Philippidou, P. & Dasen, J. S. Hox genes: choreographers in neural development, architects of circuit organization. Neuron 80, 12–34 (2013).
pubmed: 24094100 doi: 10.1016/j.neuron.2013.09.020
De Kumar, B. et al. Dynamic regulation of nanog and stem cell-signaling pathways by Hoxa1 during early neuro-ectodermal differentiation of ES cells. Proc. Natl Acad. Sci. USA 114, 5838–5845 (2017).
pubmed: 28584089 doi: 10.1073/pnas.1610612114 pmcid: 5468655
Zhou, V. W., Goren, A. & Bernstein, B. E. Charting histone modifications and the functional organization of mammalian genomes. Nat. Rev. Genet. 12, 7–18 (2011).
pubmed: 21116306 doi: 10.1038/nrg2905
Loh, Y. E. et al. Comprehensive mapping of 5-hydroxymethylcytosine epigenetic dynamics in axon regeneration. Epigenetics 12, 77–92 (2017).
pubmed: 27918235 doi: 10.1080/15592294.2016.1264560
Zhou, S., Ding, F. & Gu, X. Non-coding RNAs as emerging regulators of neural injury responses and regeneration. Neurosci. Bull. 32, 253–264 (2016).
pubmed: 27037691 pmcid: 5563772 doi: 10.1007/s12264-016-0028-7
Shen, L., Shao, N., Liu, X. & Nestler, E. ngs.plot: quick mining and visualization of next-generation sequencing data by integrating genomic databases. BMC Genom. 15, 284 (2014).
doi: 10.1186/1471-2164-15-284
He, H. H. et al. Refined DNase-seq protocol and data analysis reveals intrinsic bias in transcription factor footprint identification. Nat. Methods 11, 73–78 (2014).
pubmed: 24317252 doi: 10.1038/nmeth.2762
Cruickshank, M., Fenwick, E., Abraham, L. J. & Ulgiati, D. Quantitative differences in chromatin accessibility across regulatory regions can be directly compared in distinct cell-types. Biochem. Biophys. Res. Commun. 367, 349–355 (2008).
pubmed: 18164259 doi: 10.1016/j.bbrc.2007.12.121
Hart, S. N., Therneau, T. M., Zhang, Y., Poland, G. A. & Kocher, J. P. Calculating sample size estimates for RNA sequencing data. J. Comput. Biol. 20, 970–978 (2013).
pubmed: 23961961 pmcid: 3842884 doi: 10.1089/cmb.2012.0283

Auteurs

Ilaria Palmisano (I)

Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK. i.palmisa@imperial.ac.uk.

Matt C Danzi (MC)

The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA.
Center for Computational Science, University of Miami, Miami, FL, USA.

Thomas H Hutson (TH)

Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK.

Luming Zhou (L)

Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK.

Eilidh McLachlan (E)

Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK.

Elisabeth Serger (E)

Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK.

Kirill Shkura (K)

Integrative Genomics and Medicine, Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK.

Prashant K Srivastava (PK)

Integrative Genomics and Medicine, Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK.
National Heart & Lung Institute, Imperial College London, London, UK.

Arnau Hervera (A)

Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK.
Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona, Spain.

Nick O' Neill (NO)

The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA.

Tong Liu (T)

Department of Computer Science, University of Miami, Miami, FL, USA.

Hassen Dhrif (H)

Department of Computer Science, University of Miami, Miami, FL, USA.

Zheng Wang (Z)

Department of Computer Science, University of Miami, Miami, FL, USA.

Miroslav Kubat (M)

Department of Electrical & Computer Engineering, University of Miami, Miami, FL, USA.

Stefan Wuchty (S)

Center for Computational Science, University of Miami, Miami, FL, USA.
Department of Computer Science, University of Miami, Miami, FL, USA.
Department of Biology, University of Miami, Miami, FL, USA.
Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA.

Matthias Merkenschlager (M)

MRC London Institute of Medical Sciences, Imperial College London, London, UK.

Liron Levi (L)

Faculty of Medicine, Bar Ilan University, Safed, Israel.

Evan Elliott (E)

Faculty of Medicine, Bar Ilan University, Safed, Israel.

John L Bixby (JL)

The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA.
Center for Computational Science, University of Miami, Miami, FL, USA.

Vance P Lemmon (VP)

The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA.
Center for Computational Science, University of Miami, Miami, FL, USA.

Simone Di Giovanni (S)

Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK. s.di-giovanni@imperial.ac.uk.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH