Dynamics of Prolyl Hydroxylases Levels During Disease Progression in Experimental Colitis.


Journal

Inflammation
ISSN: 1573-2576
Titre abrégé: Inflammation
Pays: United States
ID NLM: 7600105

Informations de publication

Date de publication:
Dec 2019
Historique:
pubmed: 5 8 2019
medline: 31 3 2020
entrez: 5 8 2019
Statut: ppublish

Résumé

Hypoxia inducible factor (HIF)-prolyl hydroxylase (PHD) inhibitors are shown to be protective in several models of inflammatory bowel disease (IBD). However, these non-selective inhibitors are known to inhibit all the three isoforms of PHD, i.e. PHD-1, PHD-2 and PHD-3. In the present report, we investigated the associated changes in levels of PHDs during the development and recovery of chemically induced colitis in mice. The results indicated that in the experimental model of murine colitis, levels of both, PHD-1 and PHD-2 were found to be increased with the progression of the disease; however, the level of PHD-3 remained the same in group of healthy controls and mice with colitis. Thus, the findings advocated that inhibitors, which inhibited all three isoforms of PHD could not be ideal therapeutics for IBD since PHD-3 is required for normal gut function. Hence, this necessitates the development of new compounds capable of selectively inhibiting PHD-1 and PHD-2 for effective treatment of IBD.

Identifiants

pubmed: 31377947
doi: 10.1007/s10753-019-01065-3
pii: 10.1007/s10753-019-01065-3
pmc: PMC6856031
doi:

Substances chimiques

Prolyl-Hydroxylase Inhibitors 0
Protein Isoforms 0
Prolyl Hydroxylases EC 1.14.11.-
Hypoxia-Inducible Factor-Proline Dioxygenases EC 1.14.11.29

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2032-2036

Subventions

Organisme : Ulster University
ID : RCF-2014

Références

Kaelin, W., and P. Ratcliffe. 2008. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Molecular Cell 30: 393–402.
doi: 10.1016/j.molcel.2008.04.009
Schipani, E., C. Maes, G. Carmeliet, and G.L. Semenza. 2009. Regulation of osteogenesis angiogenesis coupling by HIFs and VEGF. Journal of Bone and Mineral Research 24: 1347–1353.
doi: 10.1359/jbmr.090602
Semenza, G. 2009. Involvement of oxygen-sensing pathways in physiologic and pathologic erythropoiesis. Blood 114: 2015.
doi: 10.1182/blood-2009-05-189985
Semenza, G. 2008. Hypoxia inducible factor 1 and cancer pathogenesis. IUBMB Life 60: 591–597.
doi: 10.1002/iub.93
Cummins, E.P., E. Berra, K.M. Comerford, A. Ginouves, K.T. Fitzgerald, F. Seeballuck, C. Godson, J.E. Nielsen, P. Moynagh, J. Pouyssegur, and C.T. Taylor. 2006. Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity. Proceedings of the National Academy of Sciences of the United States of America 103: 18154–18159.
doi: 10.1073/pnas.0602235103
Chan, D., T. Kawahara, P. Sutphin, et al. 2009. Tumor vasculature is regulated by PHD2-mediated angiogenesis and bone marrow-derived cell recruitment. Cancer Cell 15: 527–538.
doi: 10.1016/j.ccr.2009.04.010
Fu, J., and M.B. Taubman. 2010. Prolyl hydroxylase EGLN3 regulates skeletal myoblast differentiation through an NF-kappaB-dependent pathway. The Journal of Biological Chemistry 285: 8927–8935.
doi: 10.1074/jbc.M109.078600
Oliver, K.M., C.T. Taylor, and E.P. Cummins. 2009. Hypoxia. Regulation of NFkappaB signalling during inflammation: the role of hydroxylases. Arthritis Research & Therapy 11: 215.
doi: 10.1186/ar2575
Fraisl, P., J. Aragones, and P. Carmeliet. 2009. Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease. Nature Reviews. Drug Discovery 8: 139–152.
doi: 10.1038/nrd2761
Braus, N., and D. Elliott. 2009. Advances in the pathogenesis and treatment of IBD. Clinical Immunology 132: 1–9.
doi: 10.1016/j.clim.2009.02.006
Rutgeerts, P., S. Vermeire, and G. Van Assche. 2009. Biological therapies for inflammatory bowel diseases. Gastroenterology 136: 1182–1197.
doi: 10.1053/j.gastro.2009.02.001
Imielinski, M., R.N. Baldassano, A. Griffiths, et al. 2009. Common variants at five new loci associated with early-onset inflammatory bowel disease. Nature Genetics 41(12): 1335–1340. https://doi.org/10.1038/ng.489 .
doi: 10.1038/ng.489
Cummins, E., F. Seeballuck, S. Keely, et al. 2008. The hydroxylase inhibitor dimethyloxalylglycine is protective in a murine model of colitis. Gastroenterology 134: 346–348.
doi: 10.1053/j.gastro.2007.10.012
Robinson, A., S. Keely, J. Karhausen, M.E. Gerich, G.T. Furuta, and S.P. Colgan. 2008. Mucosal protection by hypoxia-inducible factor (HIF) prolyl hydroxylase inhibition. Gastroenterology 134: 145.
doi: 10.1053/j.gastro.2007.09.033
Tambuwala, M.M., M.C. Manresa, E.P. Cummins, V. Aversa, I.S. Coulter, and C.T. Taylor. 2015. Targeted delivery of the hydroxylase inhibitor DMOG provides enhanced efficacy with reduced systemic exposure in a murine model of colitis. Journal of Controlled Release 217: 221–227.
doi: 10.1016/j.jconrel.2015.09.022
Tambuwala, M.M., E.P. Cummins, C.R. Lenihan, J. Kiss, M. Stauch, C.C. Scholz, P. Fraisl, F. Lasitschka, M. Mollenhauer, S.P. Saunders, P.H. Maxwell, P. Carmeliet, P.G. Fallon, M. Schneider, and C.T. Taylor. 2010. Loss of prolyl hydroxylase-1 protects against colitis through reduced epithelial cell apoptosis and increased barrier function. Gastroenterology 139: 2093–2101.
doi: 10.1053/j.gastro.2010.06.068
Khan, M.N., M.E. Lane, P.A. McCarron, and M.M. Tambuwala. 2018. Caffeic acid phenethyl ester is protective in experimental ulcerative colitis via reduction in levels of pro-inflammatory mediators and enhancement of epithelial barrier function. Inflammopharmacology 26(2): 561–569. https://doi.org/10.1007/s10787-017-0364-x .
doi: 10.1007/s10787-017-0364-x
Cooper, H.S., S.N. Murthy, R.S. Shah, et al. 1993. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Laboratory Investigation 69: 238–249.
pubmed: 8350599
Van Welden, S., et al. 2013. Differential expression of prolyl hydroxylase 1 in patients with ulcerative colitis versus patients with Crohn’s disease/infectious colitis and healthy controls. Journal of Inflammation (London, England) 10: 36.
doi: 10.1186/1476-9255-10-36
Liu, X.B., J.A. Wang, M.E. Ogle, and L. Wei. 2009. Prolyl hydroxylase inhibitor dimethyloxalylglycine enhances mesenchymal stem cell survival. Journal of Cellular Biochemistry 106: 903–911.
doi: 10.1002/jcb.22064
Lomb, D.J., J.A. Straub, and R.S. Freeman. 2007. Prolyl hydroxylase inhibitors delay neuronal cell death caused by trophic factor deprivation. Journal of Neurochemistry 103: 1897–1906.
doi: 10.1111/j.1471-4159.2007.04873.x
Nangaku, M., Y. Izuhara, S. Takizawa, T. Yamashita, Y. Fujii-Kuriyama, O. Ohneda, M. Yamamoto, C. van Ypersele de Strihou, N. Hirayama, and T. Miyata. 2007. A novel class of prolyl hydroxylase inhibitors induces angiogenesis and exerts organ protection against ischemia. Arteriosclerosis, Thrombosis, and Vascular Biology 27: 2548–2554.
doi: 10.1161/ATVBAHA.107.148551

Auteurs

Hamid A Bakshi (HA)

SAAD Centre for Pharmacy and Diabetes, School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, County Londonderry, Northern Ireland, BT52 1SA, UK.

Vijay Mishra (V)

School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.

Saurabh Satija (S)

School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.

Meenu Mehta (M)

School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.

Faruk L Hakkim (FL)

Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, Oman.

Prashant Kesharwani (P)

School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi, 110062, India.

Kamal Dua (K)

Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia.

Dinesh K Chellappan (DK)

Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.

Nitin B Charbe (NB)

Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña McKenna 4860, 7820436, Macul, Santiago, Chile.
Sri Adichunchunagiri College of Pharmacy, Sri Adichunchunagiri University, BG Nagar, Karnataka, 571418, India.

Garima Shrivastava (G)

Indian Institute of Technology, Delhi, India.

S Rajeshkumar (S)

Department of Pharmacology, Saveetha Dental College and Hospitals, SIMATS, Chennai, Tamil Nadu, 600077, India.

Alaa A Aljabali (AA)

Faculty of Pharmacy, Department of Pharmaceutical Sciences, Yarmouk University, Irbid, Jordan.

Bahaa Al-Trad (B)

Department of Biological Sciences, Yarmouk University, Irbid, 21163, Jordan.

Kavita Pabreja (K)

School of Medicine and Public Health, University of Newcastle, Newcastle, Australia.

Murtaza M Tambuwala (MM)

SAAD Centre for Pharmacy and Diabetes, School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, County Londonderry, Northern Ireland, BT52 1SA, UK. m.tambuwala@ulster.ac.uk.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH