Dynamics of Prolyl Hydroxylases Levels During Disease Progression in Experimental Colitis.
colitis
disease activity index
inflammatory bowel disease
prolyl hydroxylases
Journal
Inflammation
ISSN: 1573-2576
Titre abrégé: Inflammation
Pays: United States
ID NLM: 7600105
Informations de publication
Date de publication:
Dec 2019
Dec 2019
Historique:
pubmed:
5
8
2019
medline:
31
3
2020
entrez:
5
8
2019
Statut:
ppublish
Résumé
Hypoxia inducible factor (HIF)-prolyl hydroxylase (PHD) inhibitors are shown to be protective in several models of inflammatory bowel disease (IBD). However, these non-selective inhibitors are known to inhibit all the three isoforms of PHD, i.e. PHD-1, PHD-2 and PHD-3. In the present report, we investigated the associated changes in levels of PHDs during the development and recovery of chemically induced colitis in mice. The results indicated that in the experimental model of murine colitis, levels of both, PHD-1 and PHD-2 were found to be increased with the progression of the disease; however, the level of PHD-3 remained the same in group of healthy controls and mice with colitis. Thus, the findings advocated that inhibitors, which inhibited all three isoforms of PHD could not be ideal therapeutics for IBD since PHD-3 is required for normal gut function. Hence, this necessitates the development of new compounds capable of selectively inhibiting PHD-1 and PHD-2 for effective treatment of IBD.
Identifiants
pubmed: 31377947
doi: 10.1007/s10753-019-01065-3
pii: 10.1007/s10753-019-01065-3
pmc: PMC6856031
doi:
Substances chimiques
Prolyl-Hydroxylase Inhibitors
0
Protein Isoforms
0
Prolyl Hydroxylases
EC 1.14.11.-
Hypoxia-Inducible Factor-Proline Dioxygenases
EC 1.14.11.29
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2032-2036Subventions
Organisme : Ulster University
ID : RCF-2014
Références
Kaelin, W., and P. Ratcliffe. 2008. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Molecular Cell 30: 393–402.
doi: 10.1016/j.molcel.2008.04.009
Schipani, E., C. Maes, G. Carmeliet, and G.L. Semenza. 2009. Regulation of osteogenesis angiogenesis coupling by HIFs and VEGF. Journal of Bone and Mineral Research 24: 1347–1353.
doi: 10.1359/jbmr.090602
Semenza, G. 2009. Involvement of oxygen-sensing pathways in physiologic and pathologic erythropoiesis. Blood 114: 2015.
doi: 10.1182/blood-2009-05-189985
Semenza, G. 2008. Hypoxia inducible factor 1 and cancer pathogenesis. IUBMB Life 60: 591–597.
doi: 10.1002/iub.93
Cummins, E.P., E. Berra, K.M. Comerford, A. Ginouves, K.T. Fitzgerald, F. Seeballuck, C. Godson, J.E. Nielsen, P. Moynagh, J. Pouyssegur, and C.T. Taylor. 2006. Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity. Proceedings of the National Academy of Sciences of the United States of America 103: 18154–18159.
doi: 10.1073/pnas.0602235103
Chan, D., T. Kawahara, P. Sutphin, et al. 2009. Tumor vasculature is regulated by PHD2-mediated angiogenesis and bone marrow-derived cell recruitment. Cancer Cell 15: 527–538.
doi: 10.1016/j.ccr.2009.04.010
Fu, J., and M.B. Taubman. 2010. Prolyl hydroxylase EGLN3 regulates skeletal myoblast differentiation through an NF-kappaB-dependent pathway. The Journal of Biological Chemistry 285: 8927–8935.
doi: 10.1074/jbc.M109.078600
Oliver, K.M., C.T. Taylor, and E.P. Cummins. 2009. Hypoxia. Regulation of NFkappaB signalling during inflammation: the role of hydroxylases. Arthritis Research & Therapy 11: 215.
doi: 10.1186/ar2575
Fraisl, P., J. Aragones, and P. Carmeliet. 2009. Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease. Nature Reviews. Drug Discovery 8: 139–152.
doi: 10.1038/nrd2761
Braus, N., and D. Elliott. 2009. Advances in the pathogenesis and treatment of IBD. Clinical Immunology 132: 1–9.
doi: 10.1016/j.clim.2009.02.006
Rutgeerts, P., S. Vermeire, and G. Van Assche. 2009. Biological therapies for inflammatory bowel diseases. Gastroenterology 136: 1182–1197.
doi: 10.1053/j.gastro.2009.02.001
Imielinski, M., R.N. Baldassano, A. Griffiths, et al. 2009. Common variants at five new loci associated with early-onset inflammatory bowel disease. Nature Genetics 41(12): 1335–1340. https://doi.org/10.1038/ng.489 .
doi: 10.1038/ng.489
Cummins, E., F. Seeballuck, S. Keely, et al. 2008. The hydroxylase inhibitor dimethyloxalylglycine is protective in a murine model of colitis. Gastroenterology 134: 346–348.
doi: 10.1053/j.gastro.2007.10.012
Robinson, A., S. Keely, J. Karhausen, M.E. Gerich, G.T. Furuta, and S.P. Colgan. 2008. Mucosal protection by hypoxia-inducible factor (HIF) prolyl hydroxylase inhibition. Gastroenterology 134: 145.
doi: 10.1053/j.gastro.2007.09.033
Tambuwala, M.M., M.C. Manresa, E.P. Cummins, V. Aversa, I.S. Coulter, and C.T. Taylor. 2015. Targeted delivery of the hydroxylase inhibitor DMOG provides enhanced efficacy with reduced systemic exposure in a murine model of colitis. Journal of Controlled Release 217: 221–227.
doi: 10.1016/j.jconrel.2015.09.022
Tambuwala, M.M., E.P. Cummins, C.R. Lenihan, J. Kiss, M. Stauch, C.C. Scholz, P. Fraisl, F. Lasitschka, M. Mollenhauer, S.P. Saunders, P.H. Maxwell, P. Carmeliet, P.G. Fallon, M. Schneider, and C.T. Taylor. 2010. Loss of prolyl hydroxylase-1 protects against colitis through reduced epithelial cell apoptosis and increased barrier function. Gastroenterology 139: 2093–2101.
doi: 10.1053/j.gastro.2010.06.068
Khan, M.N., M.E. Lane, P.A. McCarron, and M.M. Tambuwala. 2018. Caffeic acid phenethyl ester is protective in experimental ulcerative colitis via reduction in levels of pro-inflammatory mediators and enhancement of epithelial barrier function. Inflammopharmacology 26(2): 561–569. https://doi.org/10.1007/s10787-017-0364-x .
doi: 10.1007/s10787-017-0364-x
Cooper, H.S., S.N. Murthy, R.S. Shah, et al. 1993. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Laboratory Investigation 69: 238–249.
pubmed: 8350599
Van Welden, S., et al. 2013. Differential expression of prolyl hydroxylase 1 in patients with ulcerative colitis versus patients with Crohn’s disease/infectious colitis and healthy controls. Journal of Inflammation (London, England) 10: 36.
doi: 10.1186/1476-9255-10-36
Liu, X.B., J.A. Wang, M.E. Ogle, and L. Wei. 2009. Prolyl hydroxylase inhibitor dimethyloxalylglycine enhances mesenchymal stem cell survival. Journal of Cellular Biochemistry 106: 903–911.
doi: 10.1002/jcb.22064
Lomb, D.J., J.A. Straub, and R.S. Freeman. 2007. Prolyl hydroxylase inhibitors delay neuronal cell death caused by trophic factor deprivation. Journal of Neurochemistry 103: 1897–1906.
doi: 10.1111/j.1471-4159.2007.04873.x
Nangaku, M., Y. Izuhara, S. Takizawa, T. Yamashita, Y. Fujii-Kuriyama, O. Ohneda, M. Yamamoto, C. van Ypersele de Strihou, N. Hirayama, and T. Miyata. 2007. A novel class of prolyl hydroxylase inhibitors induces angiogenesis and exerts organ protection against ischemia. Arteriosclerosis, Thrombosis, and Vascular Biology 27: 2548–2554.
doi: 10.1161/ATVBAHA.107.148551