Stepwise functional connectivity reveals altered sensory-multimodal integration in medication-naïve adults with attention deficit hyperactivity disorder.
Adult
Attention Deficit Disorder with Hyperactivity
/ diagnostic imaging
Brain Mapping
Executive Function
Female
Humans
Image Processing, Computer-Assisted
Magnetic Resonance Imaging
Male
Middle Aged
Nerve Net
/ diagnostic imaging
Neural Pathways
/ diagnostic imaging
Psychiatric Status Rating Scales
Sensation
/ physiology
Young Adult
ADHD
adult ADHD
default mode network
resting-state fMRI
stepwise functional connectivity
Journal
Human brain mapping
ISSN: 1097-0193
Titre abrégé: Hum Brain Mapp
Pays: United States
ID NLM: 9419065
Informations de publication
Date de publication:
01 11 2019
01 11 2019
Historique:
received:
31
01
2019
revised:
26
06
2019
accepted:
01
07
2019
pubmed:
20
7
2019
medline:
15
4
2020
entrez:
20
7
2019
Statut:
ppublish
Résumé
Neuroimaging studies indicate that children with attention-deficit/hyperactivity disorder (ADHD) present alterations in several functional networks of the sensation-to-cognition spectrum. These alterations include functional overconnectivity within sensory regions and underconnectivity between sensory regions and neural hubs supporting higher order cognitive functions. Today, it is unknown whether this same pattern of alterations persists in adult patients with ADHD who had never been medicated for their condition. The aim of the present study was to assess whether medication-naïve adults with ADHD presented alterations in functional networks of the sensation-to-cognition spectrum. Thirty-one medication-naïve adults with ADHD and twenty-two healthy adults underwent resting-state functional magnetic resonance imaging (rs-fMRI). Stepwise functional connectivity (SFC) was used to characterize the pattern of functional connectivity between sensory seed regions and the rest of the brain at direct, short, intermediate, and long functional connectivity distances, thus covering the continuum from the sensory input to the neural hubs supporting higher order cognitive functions. As compared to controls, adults with ADHD presented increased SFC degree within primary sensory regions and decreased SFC degree between sensory seeds and higher order integration nodes. In addition, they exhibited decreased connectivity degree between sensory seeds and regions of the default-mode network. Consistently, the higher the score in clinical severity scales the lower connectivity degree between seed regions and the default mode network.
Identifiants
pubmed: 31322305
doi: 10.1002/hbm.24727
pmc: PMC6865796
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
4645-4656Subventions
Organisme : Instituto de Salud Carlos III
ID : CP16/00096
Pays : International
Organisme : Ministerio de Economía y Competitividad
ID : SAF2012-32362
Pays : International
Informations de copyright
© 2019 Wiley Periodicals, Inc.
Références
Am J Psychiatry. 2009 Nov;166(11):1286-94
pubmed: 19755575
Biol Psychiatry. 2013 Oct 15;74(8):623-32
pubmed: 23541632
J Neurosci Methods. 2008 Mar 30;169(1):249-54
pubmed: 18190970
Hum Brain Mapp. 2019 Nov 1;40(16):4645-4656
pubmed: 31322305
J Atten Disord. 2018 Sep 27;:1087054718802017
pubmed: 30259777
J Neurosci. 2012 Aug 1;32(31):10649-61
pubmed: 22855814
Neurosci Lett. 2005 Dec 2;389(2):88-93
pubmed: 16129560
Am J Psychiatry. 1993 Jun;150(6):885-90
pubmed: 8494063
Neuroreport. 2006 Jul 17;17(10):1033-6
pubmed: 16791098
Biol Psychiatry. 2008 Feb 1;63(3):332-7
pubmed: 17888409
Hum Brain Mapp. 2015 Jul;36(7):2544-57
pubmed: 25821110
Psychol Med. 2018 Oct;48(14):2399-2408
pubmed: 29409566
Brain Struct Funct. 2014 Jan;219(1):23-34
pubmed: 23184398
Hum Brain Mapp. 2014 Sep;35(9):4693-705
pubmed: 24668728
Eur Arch Psychiatry Clin Neurosci. 2016 Jun;266(4):349-57
pubmed: 26260900
Neuroimage. 2009 Feb 1;44(3):893-905
pubmed: 18976716
J Int Neuropsychol Soc. 2015 Apr;21(4):271-84
pubmed: 25928822
Neuroimage. 2017 Jul 1;154:174-187
pubmed: 28302591
Trends Cogn Sci. 2012 Jan;16(1):17-26
pubmed: 22169776
J Neurosci. 2014 Dec 10;34(50):16555-66
pubmed: 25505309
Magn Reson Med. 1995 May;33(5):636-47
pubmed: 7596267
Hum Brain Mapp. 2009 Feb;30(2):638-49
pubmed: 18219621
Brain Res. 2012 Mar 22;1445:82-91
pubmed: 22325095
Psychiatry Res. 2012 Feb 28;201(2):120-7
pubmed: 22424873
Br J Psychiatry. 2005 Sep;187:282-3
pubmed: 16135867
Nat Commun. 2019 Mar 4;10(1):1022
pubmed: 30833582
Neuroinformatics. 2013 Jul;11(3):319-37
pubmed: 23417655
Brain Res. 2009 Dec 15;1303:195-206
pubmed: 19699190
Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8
pubmed: 15976020
Neuroimage. 2011 Jun 1;56(3):1202-21
pubmed: 21182971
Mol Psychiatry. 2014 Jun;19(6):659-67
pubmed: 23774715
Biol Psychiatry. 2012 Mar 1;71(5):443-50
pubmed: 22153589
Neuroimage. 2014 Jan 1;84:320-41
pubmed: 23994314
Hum Brain Mapp. 2018 Jun;39(6):2442-2454
pubmed: 29473262
Am J Psychiatry. 2011 Feb;168(2):143-51
pubmed: 21159727
Neuroimage. 2002 Oct;17(2):825-41
pubmed: 12377157
J Abnorm Child Psychol. 1998 Aug;26(4):257-68
pubmed: 9700518
Neuroscientist. 2014 Apr;20(2):150-9
pubmed: 23835449
Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):4028-32
pubmed: 18322013
J Child Psychol Psychiatry. 2006 Oct;47(10):1051-62
pubmed: 17073984
J Neurophysiol. 2010 Jan;103(1):297-321
pubmed: 19889849
Psychiatry Res. 2010 May 30;177(3):299-304
pubmed: 20452063
Front Neuroinform. 2011 Jun 27;5:4
pubmed: 21743807
Neurosci Lett. 2014 May 1;567:68-73
pubmed: 24699175
J Neurophysiol. 2011 Sep;106(3):1125-65
pubmed: 21653723