Assessment of plasma microvesicles to monitor pancreatic islet graft dysfunction: Beta cell- and leukocyte-derived microvesicles as specific features in a pilot longitudinal study.
Adult
Aged
Cell-Derived Microparticles
/ pathology
Diabetes Mellitus, Type 1
/ therapy
Female
Follow-Up Studies
Graft Rejection
/ diagnosis
Graft Survival
Humans
Insulin-Secreting Cells
/ pathology
Islets of Langerhans Transplantation
/ adverse effects
Leukocytes
/ pathology
Longitudinal Studies
Male
Middle Aged
Pilot Projects
Postoperative Complications
/ diagnosis
Prognosis
Risk Factors
basic (laboratory) research/science
biomarker
cellular biology
clinical trial
diabetes: type 1
endocrinology/diabetology
islet transplantation
plasma cells
rejection
translational research/science
Journal
American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons
ISSN: 1600-6143
Titre abrégé: Am J Transplant
Pays: United States
ID NLM: 100968638
Informations de publication
Date de publication:
01 2020
01 2020
Historique:
received:
08
11
2018
revised:
28
06
2019
accepted:
09
07
2019
pubmed:
19
7
2019
medline:
12
1
2021
entrez:
19
7
2019
Statut:
ppublish
Résumé
Markers of early pancreatic islet graft dysfunction and its causes are lacking. We monitored 19 type 1 diabetes islet-transplanted patients for up to 36 months following last islet injection. Patients were categorized as Partial (PS) or complete (S) Success, or Graft Failure (F), using the β-score as an indicator of graft function. F was the subset reference of maximum worsened graft outcome. To identify the immune, pancreatic, and liver contribution to the graft dysfunction, the cell origin and concentration of circulating microvesicles (MVs) were assessed, including MVs from insulin-secreting β-cells typified by polysialic acid of neural cell adhesion molecule (PSA-NCAM), and data were compared with values of the β-score. Similar ranges of PSA-NCAM
Identifiants
pubmed: 31319009
doi: 10.1111/ajt.15534
pii: S1600-6135(22)10041-9
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
40-51Subventions
Organisme : French Society of Transplantation
Pays : International
Organisme : ASDIA France
Pays : International
Organisme : French National Research Agency
ID : ANR-16-CE29-0009-03
Pays : International
Informations de copyright
© 2019 The American Society of Transplantation and the American Society of Transplant Surgeons.
Références
Tanenberg RJ, Newton CA, Drake AJ. Confirmation of hypoglycemia in the “dead-in-bed” syndrome, as captured by a retrospective continuous glucose monitoring system. Endocr Pract. 2010;16(2):244-248.
McCoy RG, Van Houten HK, Ziegenfuss JY, Shah ND, Wermers RA, Smith SA. Increased mortality of patients with diabetes reporting severe hypoglycemia. Diabetes Care. 2012;35(9):1897-1901.
Lablanche S, Borot S, Wojtusciszyn A, et al. Five-year metabolic, functional, and safety results of patients with type 1 diabetes transplanted with allogenic islets within the Swiss-French GRAGIL Network. Diabetes Care. 2015;38(9):1714-1722.
Lablanche S, Vantyghem MC, Kessler L, et al. Islet transplantation versus insulin therapy in patients with type 1 diabetes with severe hypoglycaemia or poorly controlled glycaemia after kidney transplantation (TRIMECO): a multicentre, randomised controlled trial. Lancet Diabetes Endocrinol. 2018;6(7):527-537.
Collaborative Islet Transplant Registry. The CITR coordinating center and investigators. https://citregistry.org/system/files/9AR_Report.pdf. Accessed December 2016.
Benomar K, Chetboun M, Espiard S, et al. Purity of islet preparations and 5-year metabolic outcome of allogenic islet transplantation. Am J Transplant. 2018;18(4):945-951.
Toso C, Isse K, Demetris AJ, et al. Histologic graft assessment after clinical islet transplantation. Transplantation. 2009;88(11):1286-1293.
Hilbrands R, Huurman VA, Gillard P, et al. Differences in baseline lymphocyte counts and autoreactivity are associated with differences in outcome of islet cell transplantation in type 1 diabetic patients. Diabetes. 2009;58(10):2267-2276.
Piemonti L, Everly MJ, Maffi P, et al. Alloantibody and autoantibody monitoring predicts islet transplantation outcome in human type 1 diabetes. Diabetes. 2013;62(5):1656-1664.
Pouliquen E, Baltzinger P, Lemle A, et al. Anti-donor HLA antibody response after pancreatic islet grafting: characteristics, risk factors, and impact on graft function. Am J Transplant. 2017;17(2):462-473.
Han D, Xu X, Baidal D, et al. Assessment of cytotoxic lymphocyte gene expression in the peripheral blood of human islet allograft recipients: elevation precedes clinical evidence of rejection. Diabetes. 2004;53(9):2281-2290.
Ritz-Laser B, Oberholzer J, Toso C, et al. Molecular detection of circulating beta-cells after islet transplantation. Diabetes. 2002;51(3):557-561.
Berney T, Mamin A, James Shapiro AM, et al. Detection of insulin mRNA in the peripheral blood after human islet transplantation predicts deterioration of metabolic control. Am J Transplant. 2006;6(7):1704-1711.
Kanak MA, Takita M, Shahbazov R, et al. Evaluation of MicroRNA375 as a novel biomarker for graft damage in clinical islet transplantation. Transplantation. 2015;99(8):1568-1573.
Yoshimatsu G, Takita M, Kanak MA, et al. MiR-375 and miR-200c as predictive biomarkers of islet isolation and transplantation in total pancreatectomy with islet autotransplantation. J Hepatobiliary Pancreat Sci. 2016;23(9):585-594.
Gleizes C, Constantinescu A, Abbas M, et al. Liraglutide protects Rin-m5f beta cells by reducing procoagulant tissue factor activity and apoptosis prompted by microparticles under conditions mimicking Instant Blood-Mediated Inflammatory Reaction. Transpl Int. 2014;27(7):733-740.
Gleizes C, Kreutter G, Abbas M, et al. Beta cell membrane remodelling and procoagulant events occur in inflammation-driven insulin impairment: a GLP-1 receptor dependent and independent control. J Cell Mol Med. 2016;20(2):231-242.
Bakouboula B, Morel O, Faller AL, Freyssinet JM, Toti F. Significance of membrane microparticles in solid graft and cellular transplantation. Front Biosci (Landmark Ed). 2011;16:2499-2514.
Kornek M, Lynch M, Mehta SH, et al. Circulating microparticles as disease-specific biomarkers of severity of inflammation in patients with hepatitis C or nonalcoholic steatohepatitis. Gastroenterology. 2012;143(2):448-458.
Burger D, Schock S, Thompson CS, Montezano AC, Hakim AM, Touyz RM. Microparticles: biomarkers and beyond. Clin Sci (Lond). 2013;124(7):423-441.
Ridger VC, Boulanger CM, Angelillo-Scherrer A, et al. Microvesicles in vascular homeostasis and diseases. Position Paper of the European Society of Cardiology (ESC) Working Group on Atherosclerosis and Vascular Biology. Thromb Haemost. 2017;117(7):1296-1316.
Abbas M, Jesel L, Auger C, et al. Endothelial microparticles from acute coronary syndrome patients induce premature coronary artery endothelial cell aging and thrombogenicity: role of the Ang II/AT1 receptor/NADPH oxidase-mediated activation of MAPKs and PI3-kinase pathways. Circulation. 2017;135(3):280-296.
Bakouboula B, Morel O, Faure A, et al. Procoagulant membrane microparticles correlate with the severity of pulmonary arterial hypertension. Am J Respir Crit Care Med. 2008;177(5):536-543.
Al-Massarani G, Vacher-Coponat H, Paul P, et al. Impact of immunosuppressive treatment on endothelial biomarkers after kidney transplantation. Am J Transplant. 2008;8(11):2360-2367.
Qamri Z, Pelletier R, Foster J, et al. Early posttransplant changes in circulating endothelial microparticles in patients with kidney transplantation. Transpl Immunol. 2014;31(2):60-64.
Al-Massarani G, Vacher-Coponat H, Paul P, et al. Kidney transplantation decreases the level and procoagulant activity of circulating microparticles. Am J Transplant. 2009;9(3):550-557.
De Rop C, Stadler M, Buchholz S, Eisert R, Ganser A, Trummer A. Evaluation of tissue factor bearing microparticles as biomarkers in allogeneic stem-cell transplantation. Transplantation. 2011;92(3):351-358.
Moreau F, Toti F, Bayle F, et al. Rescue of a pancreatic islet graft after steroid therapy. Transplantation. 2012;93(3):e10-e11.
Toti F, Bayle F, Berney T, et al. Studies of circulating microparticle release in peripheral blood after pancreatic islet transplantation. Transplant Proc. 2011;43(9):3241-3245.
Karaca M, Castel J, Tourrel-Cuzin C, et al. Exploring functional beta-cell heterogeneity in vivo using PSA-NCAM as a specific marker. PLoS ONE. 2009;4(5):e5555.
Bonfanti L. PSA-NCAM in mammalian structural plasticity and neurogenesis. Prog Neurobiol. 2006;80(3):129-164.
Galuska CE, Lutteke T, Galuska SP. Is polysialylated NCAM not only a regulator during brain development but also during the formation of other organs? Biology. 2017;6(2): pii:E27.
Shapiro AM, Pokrywczynska M, Ricordi C. Clinical pancreatic islet transplantation. Nat Rev Endocrinol. 2017;13(5):268-277.
Ryan EA, Paty BW, Senior PA, Lakey JR, Bigam D, Shapiro AM. Beta-score: an assessment of beta-cell function after islet transplantation. Diabetes Care. 2005;28(2):343-347.
Rickels MR, Stock PG, de Koning EJP, et al. Defining outcomes for beta-cell replacement therapy in the treatment of diabetes: a consensus report on the Igls criteria from the IPITA/EPITA opinion leaders workshop. Transplantation. 2018;102(9):1479-1486.
Forbes S, Oram RA, Smith A, et al. Validation of the BETA-2 score: an improved tool to estimate beta cell function after clinical islet transplantation using a single fasting blood sample. Am J Transplant. 2016;16(9):2704-2713.
Hugel B, Zobairi F, Freyssinet JM. Measuring circulating cell-derived microparticles. J Thromb Haemost. 2004;2(10):1846-1847.
Morel O, Ohlmann P, Epailly E, et al. Endothelial cell activation contributes to the release of procoagulant microparticles during acute cardiac allograft rejection. J Heart Lung Transplant. 2008;27(1):38-45.
Barshes NR, Wyllie S, Goss JA. Inflammation-mediated dysfunction and apoptosis in pancreatic islet transplantation: implications for intrahepatic grafts. J Leukoc Biol. 2005;77(5):587-597.
Sukriti S, Maras JS, Bihari C, Das S, Vyas AK. Microvesicles in hepatic and peripheral vein can predict nonresponse to corticosteroid therapy in severe alcoholic hepatitis. Aliment Pharmacol Ther. 2018;47(8):1151-1161.
Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. Am J Ophthalmol. 2000;129(5):704-705.
Brodsky SV, Facciuto ME, Heydt D, et al. Dynamics of circulating microparticles in liver transplant patients. J Gastrointestin Liver Dis. 2008;17(3):261-268.
Sabatier F, Darmon P, Hugel B, et al. Type 1 and type 2 diabetic patients display different patterns of cellular microparticles. Diabetes. 2002;51(9):2840-2845.
Jaeschke H, Woolbright BL. Current strategies to minimize hepatic ischemia-reperfusion injury by targeting reactive oxygen species. Transplant Rev (Orlando). 2012;26(2):103-114.
Teoh NC, Farrell GC. Hepatic ischemia reperfusion injury: pathogenic mechanisms and basis for hepatoprotection. J Gastroenterol Hepatol. 2003;18(8):891-902.
Soriano AO, Jy W, Chirinos JA, et al. Levels of endothelial and platelet microparticles and their interactions with leukocytes negatively correlate with organ dysfunction and predict mortality in severe sepsis. Crit Care Med. 2005;33(11):2540-2546.
Porro C, Di Gioia S, Trotta T, et al. Pro-inflammatory effect of cystic fibrosis sputum microparticles in the murine lung. J Cyst Fibros. 2013;12(6):721-728.
Carter YM, Gelman AE, Kreisel D. Pathogenesis, management, and consequences of primary graft dysfunction. Semin Thorac Cardiovasc Surg. 2008;20(2):165-172.
Curtis AM, Wilkinson PF, Gui M, Gales TL, Hu E, Edelberg JM. p38 mitogen-activated protein kinase targets the production of proinflammatory endothelial microparticles. J Thromb Haemost. 2009;7(4):701-709.
Lunsford KE, Jayanshankar K, Eiring AM, et al. Alloreactive (CD4-Independent) CD8 + T cells jeopardize long-term survival of intrahepatic islet allografts. Am J Transplant. 2008;8(6):1113-1128.
Lunsford KE, Horne PH, Koester MA, et al. Activation and maturation of alloreactive CD4-independent, CD8 cytolytic T cells. Am J Transplant. 2006;6(10):2268-2281.
Pinkse GG, Tysma OH, Bergen CA, et al. Autoreactive CD8 T cells associated with beta cell destruction in type 1 diabetes. Proc Natl Acad Sci USA. 2005;102(51):18425-18430.
Lunsford KE, Gao D, Eiring AM, Wang Y, Frankel WL, Bumgardner GL. Evidence for tissue-directed immune responses: analysis of CD4- and CD8-dependent alloimmunity. Transplantation. 2004;78(8):1125-1133.