Identification of a leukemia-initiating stem cell in human mast cell leukemia.


Journal

Leukemia
ISSN: 1476-5551
Titre abrégé: Leukemia
Pays: England
ID NLM: 8704895

Informations de publication

Date de publication:
11 2019
Historique:
received: 25 09 2018
accepted: 18 03 2019
revised: 17 03 2019
pubmed: 7 4 2019
medline: 2 6 2020
entrez: 7 4 2019
Statut: ppublish

Résumé

Mast cell leukemia (MCL) is a highly fatal malignancy characterized by devastating expansion of immature mast cells in various organs. Although considered a stem cell disease, little is known about MCL-propagating neoplastic stem cells. We here describe that leukemic stem cells (LSCs) in MCL reside within a CD34

Identifiants

pubmed: 30953030
doi: 10.1038/s41375-019-0460-6
pii: 10.1038/s41375-019-0460-6
pmc: PMC6839966
mid: EMS82267
doi:

Substances chimiques

Antigens, CD34 0
CD33 protein, human 0
IL2RA protein, human 0
Interleukin-2 Receptor alpha Subunit 0
Sialic Acid Binding Ig-like Lectin 3 0
ADP-ribosyl Cyclase 1 EC 3.2.2.6
Dipeptidyl Peptidase 4 EC 3.4.14.5

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2673-2684

Références

Georgin-Lavialle S, Lhermitte L, Dubreuil P, Chandesris M-O, Hermine O, Damaj G. Mast cell leukemia. Blood. 2013;121:1285–95.
pubmed: 23243287
Travis WD, Li CY, Hoagland HC, Travis LB, Banks PM. Mast cell leukemia: report of a case and review of the literature. Mayo Clin Proc. 1986;61:957–66.
pubmed: 3095598
Valent P, Akin C, Metcalfe DD. Mastocytosis: 2016 updated WHO classification and novel emerging treatment concepts. Blood. 2017;129:1420–7.
pubmed: 28031180 pmcid: 5356454
Lim K-H, Tefferi A, Lasho TL, Finke C, Patnaik M, Butterfield JH, et al. Systemic mastocytosis in 342 consecutive adults: survival studies and prognostic factors. Blood. 2009;113:5727–36.
pubmed: 19363219
Sperr WR, Escribano L, Jordan JH, Schernthaner GH, Kundi M, Horny HP, et al. Morphologic properties of neoplastic mast cells: delineation of stages of maturation and implication for cytological grading of mastocytosis. Leuk Res. 2001;25:529–36.
pubmed: 11377677
Valent P, Akin C, Sperr WR, Escribano L, Arock M, Horny H-P, et al. Aggressive systemic mastocytosis and related mast cell disorders: current treatment options and proposed response criteria. Leuk Res. 2003;27:635–41.
pubmed: 12681363
Valentini CG, Rondoni M, Pogliani EM, Van Lint MT, Cattaneo C, Marbello L, et al. Mast cell leukemia: a report of ten cases. Ann Hematol. 2008;87:505–8.
pubmed: 18172645
Ustun C, Reiter A, Scott BL, Nakamura R, Damaj G, Kreil S, et al. Hematopoietic stem-cell transplantation for advanced systemic mastocytosis. J Clin Oncol. 2014;32:3264–74.
pubmed: 25154823 pmcid: 4876356
Escribano L, Orfao A, Díaz-Agustin B, Villarrubia J, Cerveró C, López A, et al. Indolent systemic mast cell disease in adults: immunophenotypic characterization of bone marrow mast cells and its diagnostic implications. Blood. 1998;91:2731–6.
pubmed: 9531582
Escribano L, Díaz-Agustín B, Bellas C, Navalón R, Nuñez R, Sperr WR, et al. Utility of flow cytometric analysis of mast cells in the diagnosis and classification of adult mastocytosis. Leuk Res. 2001;25:563–70.
pubmed: 11377681
Sotlar K, Horny H-P, Simonitsch I, Krokowski M, Aichberger KJ, Mayerhofer M, et al. CD25 indicates the neoplastic phenotype of mast cells: a novel immunohistochemical marker for the diagnosis of systemic mastocytosis (SM) in routinely processed bone marrow biopsy specimens. Am J Surg Pathol. 2004;28:1319–25.
pubmed: 15371947
Teodosio C, García-Montero AC, Jara-Acevedo M, Sánchez-Muñoz L, Alvarez-Twose I, Núñez R, et al. Mast cells from different molecular and prognostic subtypes of systemic mastocytosis display distinct immunophenotypes. J Allergy Clin Immunol. 2010;125:719–26. 726.e1–726.e4
pubmed: 20061010
Sánchez-Muñoz L, Teodosio C, Morgado JMT, Perbellini O, Mayado A, Alvarez-Twose I, et al. Flow cytometry in mastocytosis: utility as a diagnostic and prognostic tool. Immunol Allergy Clin North Am. 2014;34:297–313.
pubmed: 24745675
Arock M, Valent P. Pathogenesis, classification and treatment of mastocytosis: state of the art in 2010 and future perspectives. Expert Rev Hematol. 2010;3:497–516.
pubmed: 21083038
Joris M, Georgin-Lavialle S, Chandesris M-O, Lhermitte L, Claisse J-F, Canioni D, et al. Mast cell leukaemia: c-KIT mutations are not always positive. Case Rep Hematol. 2012;2012:517546.
pubmed: 22997594 pmcid: 3444844
Mital A, Piskorz A, Lewandowski K, Wasąg B, Limon J, Hellmann A. A case of mast cell leukaemia with exon 9 KIT mutation and good response to imatinib. Eur J Haematol. 2011;86:531–5.
pubmed: 21362052
Valent P, Blatt K, Eisenwort G, Herrmann H, Cerny-Reiterer S, Thalhammer R, et al. FLAG-induced remission in a patient with acute mast cell leukemia (MCL) exhibiting t(7;10)(q22; q26) and KIT D816H. Leuk Res Rep. 2014;3:8–13.
pubmed: 24596674
Damaj G, Joris M, Chandesris O, Hanssens K, Soucie E, Canioni D, et al. ASXL1 but not TET2 mutations adversely impact overall survival of patients suffering systemic mastocytosis with associated clonal hematologic non-mast-cell diseases. PLoS ONE. 2014;9:e85362.
pubmed: 24465546 pmcid: 3897447
Hanssens K, Brenet F, Agopian J, Georgin-Lavialle S, Damaj G, Cabaret L, et al. SRSF2-p95 hotspot mutation is highly associated with advanced forms of mastocytosis and mutations in epigenetic regulator genes. Haematologica. 2014;99:830–5.
pubmed: 24389310 pmcid: 4008120
Schwaab J, Schnittger S, Sotlar K, Walz C, Fabarius A, Pfirrmann M, et al. Comprehensive mutational profiling in advanced systemic mastocytosis. Blood. 2013;122:2460–6.
pubmed: 23958953
Wilson TM, Maric I, Simakova O, Bai Y, Chan EC, Olivares N, et al. Clonal analysis of NRAS activating mutations in KIT-D816V systemic mastocytosis. Haematologica. 2011;96:459–63.
pubmed: 21134978
Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–7.
pubmed: 9212098
Copland M. Chronic myelogenous leukemia stem cells: what’s new? Curr Hematol Malig Rep. 2009;4:66–73.
pubmed: 20425417
Eisterer W, Jiang X, Christ O, Glimm H, Lee KH, Pang E, et al. Different subsets of primary chronic myeloid leukemia stem cells engraft immunodeficient mice and produce a model of the human disease. Leukemia. 2005;19:435–41.
pubmed: 15674418
Kavalerchik E, Goff D, Jamieson CHM. Chronic myeloid leukemia stem cells. J Clin Oncol. 2008;26:2911–5.
pubmed: 18539972
Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–8.
pubmed: 7509044
Nguyen LV, Vanner R, Dirks P, Eaves CJ. Cancer stem cells: an evolving concept. Nat Rev Cancer. 2012;12:133–43.
pubmed: 22237392
Valent P. Targeting of leukemia-initiating cells to develop curative drug therapies: straightforward but nontrivial concept. Curr Cancer Drug Targets. 2011;11:56–71.
pubmed: 21062243
Taussig DC, Miraki-Moud F, Anjos-Afonso F, Pearce DJ, Allen K, Ridler C, et al. Anti-CD38 antibody-mediated clearance of human repopulating cells masks the heterogeneity of leukemia-initiating cells. Blood. 2008;112:568–75.
pubmed: 18523148
Jamieson CHM, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL, et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med. 2004;351:657–67.
pubmed: 15306667
Herrmann H, Sadovnik I, Cerny-Reiterer S, Rülicke T, Stefanzl G, Willmann M, et al. Dipeptidylpeptidase IV (CD26) defines leukemic stem cells (LSC) in chronic myeloid leukemia. Blood. 2014;123:3951–62.
pubmed: 24778155
Järås M, Johnels P, Hansen N, Agerstam H, Tsapogas P, Rissler M, et al. Isolation and killing of candidate chronic myeloid leukemia stem cells by antibody targeting of IL-1 receptor accessory protein. Proc Natl Acad Sci USA. 2010;107:16280–5.
pubmed: 20805474
van Rhenen A, van Dongen GAMS, Kelder A, Rombouts EJ, Feller N, Moshaver B, et al. The novel AML stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells. Blood. 2007;110:2659–66.
pubmed: 17609428
Saito Y, Kitamura H, Hijikata A, Tomizawa-Murasawa M, Tanaka S, Takagi S, et al. Identification of therapeutic targets for quiescent, chemotherapy-resistant human leukemia stem cells. Sci Transl Med. 2010;2:17ra9.
pubmed: 20371479 pmcid: 3005290
Fritsche-Polanz R, Fritz M, Huber A, Sotlar K, Sperr WR, Mannhalter C, et al. High frequency of concomitant mastocytosis in patients with acute myeloid leukemia exhibiting the transforming KIT mutation D816V. Mol Oncol. 2010;4:335–46.
pubmed: 20471335 pmcid: 5527910
Georgin-Lavialle S, Lhermitte L, Baude C, Barete S, Bruneau J, Launay J-M, et al. Blood CD34-c-Kit+cell rate correlates with aggressive forms of systemic mastocytosis and behaves like a mast cell precursor. Blood. 2011;118:5246–9.
pubmed: 21878676
Nagai S, Ichikawa M, Takahashi T, Sato H, Yokota H, Oshima K, et al. The origin of neoplastic mast cells in systemic mastocytosis with AML1/ETO-positive acute myeloid leukemia. Exp Hematol. 2007;35:1747–52.
pubmed: 17976525
Rottem M, Okada T, Goff JP, Metcalfe DD. Mast cells cultured from the peripheral blood of normal donors and patients with mastocytosis originate from a CD34+/Fc epsilon RI- cell population. Blood. 1994;84:2489–96.
pubmed: 7522630
Kent D, Copley M, Benz C, Dykstra B, Bowie M, Eaves C. Regulation of hematopoietic stem cells by the steel factor/KIT signaling pathway. Clin Cancer Res. 2008;14:1926–30.
pubmed: 18381929
Takagi S, Saito Y, Hijikata A, Tanaka S, Watanabe T, Hasegawa T, et al. Membrane-bound human SCF/KL promotes in vivo human hematopoietic engraftment and myeloid differentiation. Blood. 2012;119:2768–77.
pubmed: 22279057 pmcid: 3327455
Valent P, Sotlar K, Sperr WR, Escribano L, Yavuz S, Reiter A, et al. Refined diagnostic criteria and classification of mast cell leukemia (MCL) and myelomastocytic leukemia (MML): a consensus proposal. Ann Oncol. 2014;25:1691–700.
pubmed: 24675021 pmcid: 4155468
Blatt K, Herrmann H, Hoermann G, Willmann M, Cerny-Reiterer S, Sadovnik I, et al. Identification of campath-1 (CD52) as novel drug target in neoplastic stem cells in 5q-patients with MDS and AML. Clin Cancer Res. 2014;20:3589–602.
pubmed: 24799522
Saleh R, Wedeh G, Herrmann H, Bibi S, Cerny-Reiterer S, Sadovnik I, et al. A new human mast cell line expressing a functional IgE receptor converts to tumorigenic growth by KIT D816V transfection. Blood. 2014;124:111–20.
pubmed: 24677542
Taussig DC, Vargaftig J, Miraki-Moud F, Griessinger E, Sharrock K, Luke T, et al. Leukemia-initiating cells from some acute myeloid leukemia patients with mutated nucleophosmin reside in the CD34(-) fraction. Blood. 2010;115:1976–84.
pubmed: 20053758 pmcid: 2837317
Gotlib J, Berubé C, Growney JD, Chen CC, George TI, Williams C, et al. Activity of the tyrosine kinase inhibitor PKC412 in a patient with mast cell leukemia with the D816V KIT mutation. Blood. 2005;106:2865–70.
pubmed: 7949167
Florian S, Sonneck K, Hauswirth AW, Krauth M-T, Schernthaner G-H, Sperr WR, et al. Detection of molecular targets on the surface of CD34+/CD38− stem cells in various myeloid malignancies. Leuk Lymphoma. 2006;47:207–22.
pubmed: 16321850
Alvarez-Twose I, Martínez-Barranco P, Gotlib J, García-Montero A, Morgado JM, Jara-Acevedo M, et al. Complete response to gemtuzumab ozogamicin in a patient with refractory mast cell leukemia. Leukemia. 2016;30:1753–6.
pubmed: 26876592
Gotlib J, Kluin-Nelemans HC, George TI, Akin C, Sotlar K, Hermine O, et al. Efficacy and safety of midostaurin in advanced systemic mastocytosis. N Engl J Med. 2016;374:2530–41.
Blatt K, Cerny-Reiterer S, Schwaab J, Sotlar K, Eisenwort G, Stefanzl G, et al. Identification of the Ki-1 antigen (CD30) as a novel therapeutic target in systemic mastocytosis. Blood. 2015;126:2832–41.
pubmed: 26486787 pmcid: 4692143
Sotlar K, Cerny-Reiterer S, Petat-Dutter K, Hessel H, Berezowska S, Müllauer L, et al. Aberrant expression of CD30 in neoplastic mast cells in high-grade mastocytosis. Mod Pathol. 2011;24:585–95.
pubmed: 21186345

Auteurs

Gregor Eisenwort (G)

Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090, Vienna, Austria.
Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090, Vienna, Austria.

Irina Sadovnik (I)

Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090, Vienna, Austria.
Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090, Vienna, Austria.

Juliana Schwaab (J)

Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, 68167, Mannheim, Germany.

Mohamad Jawhar (M)

Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, 68167, Mannheim, Germany.

Alexandra Keller (A)

Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090, Vienna, Austria.

Gabriele Stefanzl (G)

Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090, Vienna, Austria.

Daniela Berger (D)

Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090, Vienna, Austria.

Katharina Blatt (K)

Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090, Vienna, Austria.
Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090, Vienna, Austria.

Gregor Hoermann (G)

Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria.

Martin Bilban (M)

Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria.

Michael Willmann (M)

Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090, Vienna, Austria.
Department for Companion Animals & Horses, Clinic for Internal Medicine and Infectious Diseases, University of Veterinary Medicine Vienna, 1210, Vienna, Austria.

Christiana Winding (C)

Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210, Vienna, Austria.

Wolfgang R Sperr (WR)

Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090, Vienna, Austria.
Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090, Vienna, Austria.

Michel Arock (M)

Cellular and Molecular Oncology, LBPA CNRS UMR8113, Ecole Normale Supérieure de Cachan, 94230, Cachan, France.

Thomas Rülicke (T)

Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090, Vienna, Austria.
Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210, Vienna, Austria.

Andreas Reiter (A)

Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, 68167, Mannheim, Germany.

Peter Valent (P)

Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090, Vienna, Austria. peter.valent@meduniwien.ac.at.
Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090, Vienna, Austria. peter.valent@meduniwien.ac.at.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH