A radiomics approach to predict lymph node metastasis and clinical outcome of intrahepatic cholangiocarcinoma.
Cholangiocarcinoma
Decision support techniques
Lymphatic metastasis
Nomogram
Radiomics
Journal
European radiology
ISSN: 1432-1084
Titre abrégé: Eur Radiol
Pays: Germany
ID NLM: 9114774
Informations de publication
Date de publication:
Jul 2019
Jul 2019
Historique:
received:
15
11
2018
accepted:
08
03
2019
revised:
19
02
2019
pubmed:
28
3
2019
medline:
27
8
2019
entrez:
28
3
2019
Statut:
ppublish
Résumé
This study was conducted in order to establish and validate a radiomics model for predicting lymph node (LN) metastasis of intrahepatic cholangiocarcinoma (IHC) and to determine its prognostic value. For this retrospective study, a radiomics model was developed in a primary cohort of 103 IHC patients who underwent curative-intent resection and lymphadenectomy. Radiomics features were extracted from arterial phase computed tomography (CT) scans. A radiomics signature was built based on highly reproducible features using the least absolute shrinkage and selection operator (LASSO) method. Multivariate logistic regression analysis was adopted to establish a radiomics model incorporating radiomics signature and other independent predictors. Model performance was determined by its discrimination, calibration, and clinical usefulness. The model was internally validated in 52 consecutive patients. The radiomics signature comprised eight LN-status-related features and showed significant association with LN metastasis in both cohorts (p < 0.001). A radiomics nomogram that incorporates radiomics signature and CA 19-9 level showed good calibration and discrimination in the primary cohort (AUC 0.8462) and validation cohort (AUC 0.8921). Promisingly, the radiomics nomogram yielded an AUC of 0.9224 in the CT-reported LN-negative subgroup. Decision curve analysis confirmed the clinical utility of this nomogram. High risk for metastasis portended significantly lower overall and recurrence-free survival than low risk for metastasis (both p < 0.001). The radiomics nomogram was an independent preoperative predictor of overall and recurrence-free survival. Our radiomics model provided a robust diagnostic tool for prediction of LN metastasis, especially in CT-reported LN-negative IHC patients, that may facilitate clinical decision-making. • The radiomics nomogram showed good performance for prediction of LN metastasis in IHC patients, particularly in the CT-reported LN-negative subgroup. • Prognosis of high-risk patients remains dismal after curative-intent resection. • The radiomics model may facilitate clinical decision-making and define patient subsets benefiting most from surgery.
Identifiants
pubmed: 30915561
doi: 10.1007/s00330-019-06142-7
pii: 10.1007/s00330-019-06142-7
doi:
Types de publication
Journal Article
Langues
eng
Pagination
3725-3735Subventions
Organisme : National Natural Science Foundation of China
ID : 81530048
Organisme : National Natural Science Foundation of China
ID : 81470901
Organisme : National Natural Science Foundation of China
ID : 81670570
Organisme : Key research and development program of Jiangsu Province
ID : BE2016789
Références
Radiology. 2011 Jul;260(1):148-57
pubmed: 21474703
Radiology. 2018 Jul;288(1):7-13
pubmed: 29869969
HPB (Oxford). 2011 Dec;13(12):881-6
pubmed: 22081924
Radiology. 2006 Apr;239(1):113-21
pubmed: 16467211
Cancer Res. 2017 Nov 1;77(21):e104-e107
pubmed: 29092951
Ann Surg Oncol. 2016 Aug;23(Suppl 4):485-493
pubmed: 27393571
Nat Rev Gastroenterol Hepatol. 2011 Aug 02;8(9):512-22
pubmed: 21808282
J Clin Oncol. 2011 Aug 10;29(23):3140-5
pubmed: 21730269
Nat Rev Clin Oncol. 2017 Dec;14(12):749-762
pubmed: 28975929
Eur Radiol. 2019 Jun;29(6):3111-3121
pubmed: 30560357
JAMA Oncol. 2016 Dec 1;2(12):1636-1642
pubmed: 27541161
Lancet. 2014 Jun 21;383(9935):2168-79
pubmed: 24581682
J Hepatol. 2014 Jun;60(6):1268-89
pubmed: 24681130
Ann Thorac Surg. 2018 Jul;106(1):214-220
pubmed: 29550204
Clin Cancer Res. 2017 Nov 15;23(22):6904-6911
pubmed: 28874414
Radiology. 2014 Oct;273(1):125-35
pubmed: 24893049
Cancer. 1950 Jan;3(1):32-5
pubmed: 15405679
Radiology. 2019 Jan;290(1):90-98
pubmed: 30325283
Ann Surg Oncol. 2015 Jul;22(7):2269-78
pubmed: 25582737
Nat Rev Clin Oncol. 2018 Feb;15(2):95-111
pubmed: 28994423
J Clin Oncol. 2016 Jun 20;34(18):2157-64
pubmed: 27138577
Radiology. 1982 Apr;143(1):29-36
pubmed: 7063747
J Hepatobiliary Pancreat Sci. 2018 Jun;25(6):299-307
pubmed: 29656560
Nature. 2013 Sep 19;501(7467):355-64
pubmed: 24048068
Radiology. 2006 Jan;238(1):150-5
pubmed: 16304089
J Natl Compr Canc Netw. 2014 Aug;12(8):1152-82
pubmed: 25099447
Br J Surg. 2018 Jun;105(7):848-856
pubmed: 29193010
Ann Oncol. 2017 Jun 1;28(6):1191-1206
pubmed: 28168275
J Gastroenterol. 2015 Sep;50(9):913-27
pubmed: 25833009
JAMA. 2015 Jan 27;313(4):409-10
pubmed: 25626037
Biometrics. 1988 Sep;44(3):837-45
pubmed: 3203132
Br J Surg. 2018 Jun;105(7):857-866
pubmed: 29656380