Persistent behavior deficits, neuroinflammation, and oxidative stress in a rat model of acute organophosphate intoxication.
Animals
Behavior, Animal
Brain
/ metabolism
Disease Models, Animal
Inflammation
/ chemically induced
Isoflurophate
/ toxicity
Male
Neurotoxicity Syndromes
/ metabolism
Organophosphate Poisoning
/ metabolism
Oxidative Stress
/ drug effects
Rats
Rats, Sprague-Dawley
Status Epilepticus
/ chemically induced
Behavior
Cognition
Diisopropylfluorophosphate
Electroencephalography
Microgliosis
Persistent effects
Preclinical model
Reactive astrogliosis
Spontaneous recurrent seizures
Sublethal toxicity
Journal
Neurobiology of disease
ISSN: 1095-953X
Titre abrégé: Neurobiol Dis
Pays: United States
ID NLM: 9500169
Informations de publication
Date de publication:
01 2020
01 2020
Historique:
received:
22
12
2018
revised:
05
03
2019
accepted:
20
03
2019
pubmed:
25
3
2019
medline:
15
12
2020
entrez:
26
3
2019
Statut:
ppublish
Résumé
Current medical countermeasures for organophosphate (OP)-induced status epilepticus (SE) are not effective in preventing long-term morbidity and there is an urgent need for improved therapies. Rat models of acute intoxication with the OP, diisopropylfluorophosphate (DFP), are increasingly being used to evaluate therapeutic candidates for efficacy in mitigating the long-term neurologic effects associated with OP-induced SE. Many of these therapeutic candidates target neuroinflammation and oxidative stress because of their implication in the pathogenesis of persistent neurologic deficits associated with OP-induced SE. Critical to these efforts is the rigorous characterization of the rat DFP model with respect to outcomes associated with acute OP intoxication in humans, which include long-term electroencephalographic, neurobehavioral, and neuropathologic effects, and their temporal relationship to neuroinflammation and oxidative stress. To address these needs, we examined a range of outcomes at later times post-exposure than have previously been reported for this model. Adult male Sprague-Dawley rats were given pyridostigmine bromide (0.1 mg/kg, im) 30 min prior to administration of DFP (4 mg/kg, sc), which was immediately followed by atropine sulfate (2 mg/kg, im) and pralidoxime (25 mg/kg, im). This exposure paradigm triggered robust electroencephalographic and behavioral seizures that rapidly progressed to SE lasting several hours in 90% of exposed animals. Animals that survived DFP-induced SE (~70%) exhibited spontaneous recurrent seizures and hyperreactive responses to tactile stimuli over the first 2 months post-exposure. Performance in the elevated plus maze, open field, and Pavlovian fear conditioning tests indicated that acute DFP intoxication reduced anxiety-like behavior and impaired learning and memory at 1 and 2 months post-exposure in the absence of effects on general locomotor behavior. Immunohistochemical analyses revealed significantly increased expression of biomarkers of reactive astrogliosis, microglial activation and oxidative stress in multiple brain regions at 1 and 2 months post-DFP, although there was significant spatiotemporal heterogeneity across these endpoints. Collectively, these data largely support the relevance of the rat model of acute DFP intoxication as a model for acute OP intoxication in the human, and support the hypothesis that neuroinflammation and/or oxidative stress represent potential therapeutic targets for mitigating the long-term neurologic sequelae of acute OP intoxication.
Identifiants
pubmed: 30905768
pii: S0969-9961(19)30073-7
doi: 10.1016/j.nbd.2019.03.019
pmc: PMC6754818
mid: NIHMS1525963
pii:
doi:
Substances chimiques
Isoflurophate
12UHW9R67N
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
104431Subventions
Organisme : NIGMS NIH HHS
ID : T32 GM099608
Pays : United States
Organisme : NICHD NIH HHS
ID : U54 HD079125
Pays : United States
Organisme : NINDS NIH HHS
ID : U54 NS079202
Pays : United States
Informations de copyright
Copyright © 2019 Elsevier Inc. All rights reserved.
Références
J Appl Toxicol. 2018 Aug;38(8):1058-1070
pubmed: 29516527
Toxicol Sci. 2018 Apr 1;162(2):611-621
pubmed: 29272548
J Toxicol Environ Health B Crit Rev. 1999 Apr-Jun;2(2):161-81
pubmed: 10230392
Biochim Biophys Acta Mol Basis Dis. 2018 Sep;1864(9 Pt B):2845-2858
pubmed: 29802961
Toxicol Sci. 2017 Jun 1;157(2):330-341
pubmed: 28329845
Ann N Y Acad Sci. 2016 Aug;1378(1):124-136
pubmed: 27467073
Neurotoxicology. 2012 Jun;33(3):391-400
pubmed: 22498093
Neurotoxicology. 2012 Jun;33(3):575-84
pubmed: 22342984
Toxicol Appl Pharmacol. 2008 Mar 1;227(2):265-74
pubmed: 18164360
BMC Public Health. 2007 Dec 21;7:357
pubmed: 18154668
Behav Brain Res. 2008 Aug 5;191(1):95-103
pubmed: 18457884
Environ Toxicol Pharmacol. 2005 May;19(3):447-50
pubmed: 21783510
J Med Toxicol. 2010 Dec;6(4):408-12
pubmed: 20532844
Neuropharmacology. 2015 Jun;93:15-27
pubmed: 25656476
Environ Health Perspect. 2001 Nov;109(11):1169-73
pubmed: 11713003
Curr Protoc Neurosci. 2018 Apr;83(1):e44
pubmed: 30040208
Toxicology. 2014 Sep 2;323:19-25
pubmed: 24881594
Environ Toxicol Pharmacol. 1999 Apr;7(2):147-52
pubmed: 21781920
Biol Chem. 2014 Feb;395(2):203-30
pubmed: 24127541
Toxicol Appl Pharmacol. 2009 Oct 15;240(2):124-31
pubmed: 19615394
J Vis Exp. 2018 Oct 13;(140):
pubmed: 30371665
Neurotoxicology. 2014 Sep;44:352-7
pubmed: 25172410
Case Rep Emerg Med. 2014;2014:676358
pubmed: 25580311
Epilepsia. 2018 Jun;59(6):1234-1244
pubmed: 29672844
Arch Environ Health. 1998 Jul-Aug;53(4):249-56
pubmed: 9709988
Elife. 2017 Jul 26;6:
pubmed: 28746029
Pharmacol Ther. 2019 Feb;194:44-58
pubmed: 30189290
Toxicol Appl Pharmacol. 2011 Jun 15;253(3):261-9
pubmed: 21513723
Neurotoxicology. 2016 Sep;56:196-203
pubmed: 27527991
J Neuroinflammation. 2016 Oct 12;13(1):267
pubmed: 27733171
Arch Gen Psychiatry. 1976 Feb;33(2):225-8
pubmed: 1252099
CMAJ. 2013 Oct 1;185(14):E665
pubmed: 24003104
J Neuroinflammation. 2006 Nov 09;3:30
pubmed: 17094809
J Appl Toxicol. 2019 Jan;39(1):101-116
pubmed: 30027640
Clin Chim Acta. 2006 Apr;366(1-2):1-13
pubmed: 16337171
Neurotoxicology. 2014 Sep;44:335-43
pubmed: 25150775
J Pharmacol Exp Ther. 2016 Mar;356(3):645-55
pubmed: 26718240
Toxicol Appl Pharmacol. 2011 Sep 15;255(3):229-41
pubmed: 21791221
J Affect Disord. 2017 Sep;219:93-104
pubmed: 28535450
Front Neurol. 2018 Nov 30;9:1023
pubmed: 30555406
Neuropharmacology. 2016 Nov;110(Pt A):419-430
pubmed: 27477533
Am J Respir Crit Care Med. 2014 Dec 15;190(12):1342-54
pubmed: 25419614
Neurotoxicology. 2012 Dec;33(6):1476-1490
pubmed: 23000013
Neurotoxicology. 2009 Nov;30(6):1025-9
pubmed: 19632271
Am J Emerg Med. 2013 Apr;31(4):676-9
pubmed: 23380104
Toxicol Sci. 2010 Aug;116(2):623-31
pubmed: 20498005
Hum Immunol. 2013 Oct;74(10):1392-9
pubmed: 23777924
J Chem. 2016;2016:null
pubmed: 28856029
Neurology. 2010 May 11;74(19):1524-30
pubmed: 20458069
Neurobiol Dis. 2018 Nov 20;:104335
pubmed: 30468862
Pharmacol Biochem Behav. 1987 Jul;27(3):407-12
pubmed: 3659063
Neurotoxicol Teratol. 2010 May-Jun;32(3):329-35
pubmed: 20034559
Neurochem Res. 2000 Jun;25(6):809-16
pubmed: 10943999
J Occup Health. 2005 Jul;47(4):299-304
pubmed: 16096354
J Pharmacol Exp Ther. 2014 Aug;350(2):313-21
pubmed: 24907067
Acad Emerg Med. 2003 Apr;10(4):295-8
pubmed: 12670839
Curr Neurobiol. 2012 Jul;3(2):90-97
pubmed: 24039349
Epilepsia. 2010 Aug;51(8):1503-10
pubmed: 20067510
Toxicol Sci. 2017 Jun 1;157(2):342-353
pubmed: 28329842
Lancet. 2008 Feb 16;371(9612):597-607
pubmed: 17706760
Neurotoxicology. 2019 Jul;73:81-84
pubmed: 30853371
Ann N Y Acad Sci. 2016 Aug;1378(1):17-24
pubmed: 27371936
J Pharmacol Exp Ther. 2018 Nov;367(2):302-321
pubmed: 30115757
J Neuroinflammation. 2015 Apr 02;12:64
pubmed: 25880399