Comparison of organ-specific endothelial cells in terms of microvascular formation and endothelial barrier functions.
Blood-Brain Barrier
/ cytology
Brain
/ blood supply
Capillary Permeability
Cell Communication
Cell Differentiation
Cells, Cultured
Coculture Techniques
Human Umbilical Vein Endothelial Cells
/ metabolism
Humans
Lab-On-A-Chip Devices
Mesenchymal Stem Cells
/ metabolism
Microvessels
/ cytology
Neovascularization, Physiologic
Pericytes
/ metabolism
Phenotype
Tight Junction Proteins
/ metabolism
Tight Junctions
/ metabolism
Angiogenesis
Blood brain barrier
Microfluidics
Permeability
Journal
Microvascular research
ISSN: 1095-9319
Titre abrégé: Microvasc Res
Pays: United States
ID NLM: 0165035
Informations de publication
Date de publication:
03 2019
03 2019
Historique:
received:
15
09
2018
revised:
08
11
2018
accepted:
18
11
2018
pubmed:
26
11
2018
medline:
10
4
2019
entrez:
26
11
2018
Statut:
ppublish
Résumé
Every organ demonstrates specific vascular characteristics and functions maintained by interactions of endothelial cells (ECs) and parenchymal cells. Particularly, brain ECs play a central role in the formation of a functional blood brain barrier (BBB). Organ-specific ECs have their own morphological features, and organ specificity must be considered when investigating interactions between ECs and other cell types constituting a target organ. Here we constructed angiogenesis-based microvascular networks with perivascular cells in a microfluidic device setting by coculturing ECs and mesenchymal stem cells (MSCs). Furthermore, we analyzed endothelial barrier functions as well as fundamental morphology, an essential step to build an in vitro BBB model. In particular, we used both brain microvascular ECs (BMECs) and human umbilical vein ECs (HUVECs) to test if organ specificity of ECs affects the formation processes and endothelial barrier functions of an engineered microvascular network. We found that microvascular formation processes differed by the source of ECs. HUVECs formed more extensive microvascular networks compared to BMECs while no differences were observed between BMECs and HUVECs in terms of both the microvascular diameter and the number of pericytes peripherally associated with the microvasculatures. To compare the endothelial barrier functions of each type of EC, we performed fluorescence dextran perfusion on constructed microvasculatures. The permeability coefficient of BMEC microvasculatures was significantly lower than that of HUVEC microvasculatures. In addition, there were significant differences in terms of tight junction protein expression. These results suggest that the organ source of ECs influences the properties of engineered microvasculature and thus is a factor to be considered in the design of organ-specific cell culture models.
Identifiants
pubmed: 30472038
pii: S0026-2862(18)30211-5
doi: 10.1016/j.mvr.2018.11.007
pmc: PMC6294313
mid: NIHMS1515227
pii:
doi:
Substances chimiques
Tight Junction Proteins
0
Types de publication
Comparative Study
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
60-70Subventions
Organisme : NINDS NIH HHS
ID : R01 NS065089
Pays : United States
Informations de copyright
Copyright © 2018 Elsevier Inc. All rights reserved.
Références
Pharmacol Ther. 2014 Aug;143(2):181-96
pubmed: 24594234
J Biomech Eng. 2014 Mar;136(3):031005
pubmed: 24193698
PLoS One. 2015 Jul 23;10(7):e0133880
pubmed: 26204526
Microvasc Res. 2009 Mar;77(2):166-73
pubmed: 18838082
Neuron. 2008 Jan 24;57(2):178-201
pubmed: 18215617
Stem Cells Dev. 2014 Feb 15;23(4):319-32
pubmed: 24171705
Cell Adh Migr. 2014;8(2):158-64
pubmed: 25422846
Stem Cells. 2011 Jan;29(1):5-10
pubmed: 21280154
Tissue Barriers. 2016 Jan 08;4(1):e1138017
pubmed: 27141420
Dev Cell. 2013 Jul 29;26(2):204-19
pubmed: 23871589
Front Cell Neurosci. 2016 Feb 04;10:20
pubmed: 26869887
Tissue Eng Part A. 2015 Aug;21(15-16):2166-76
pubmed: 25891384
Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6712-7
pubmed: 23569284
J Clin Invest. 1996 Nov 1;98(9):1949-53
pubmed: 8903311
Bioimpacts. 2016;6(4):225-248
pubmed: 28265539
Lab Chip. 2013 Apr 21;13(8):1489-500
pubmed: 23440068
Tissue Eng Part A. 2019 Mar;25(5-6):499-510
pubmed: 30234439
Neurobiol Dis. 2010 Jan;37(1):13-25
pubmed: 19664713
Pflugers Arch. 2017 Jan;469(1):123-134
pubmed: 27957611
Nature. 2010 Nov 25;468(7323):557-61
pubmed: 20944627
Am J Physiol Lung Cell Mol Physiol. 2003 Aug;285(2):L434-42
pubmed: 12740216
Int J Dev Biol. 2011;55(3):261-8
pubmed: 21710434
Nature. 2014 May 22;509(7501):507-11
pubmed: 24828040
Cell. 2015 Nov 19;163(5):1064-1078
pubmed: 26590417
Nat Rev Neurol. 2018 Mar;14(3):133-150
pubmed: 29377008
Nature. 2004 Mar 11;428(6979):138-9
pubmed: 15014486
Eur J Pharm Biopharm. 2014 Aug;87(3):409-32
pubmed: 24686194
J Cereb Blood Flow Metab. 2017 Oct;37(10):3300-3317
pubmed: 28753105
Nat Protoc. 2012 Jun 07;7(7):1247-59
pubmed: 22678430
Microvasc Res. 2014 Jan;91:90-8
pubmed: 24333621
FEBS J. 2015 Nov;282(21):4067-79
pubmed: 26277326
Circ Res. 2005 Sep 16;97(6):512-23
pubmed: 16166562
Proc Natl Acad Sci U S A. 2017 Aug 15;114(33):8758-8763
pubmed: 28765370
Nature. 2016 Jan 21;529(7586):316-25
pubmed: 26791722
Drug Discov Today. 2016 Sep;21(9):1367-1386
pubmed: 27283274
Nature. 2010 Nov 25;468(7323):562-6
pubmed: 20944625