GUCA2A dysregulation as a promising biomarker for accurate diagnosis and prognosis of colorectal cancer.


Journal

Clinical and experimental medicine
ISSN: 1591-9528
Titre abrégé: Clin Exp Med
Pays: Italy
ID NLM: 100973405

Informations de publication

Date de publication:
01 Nov 2024
Historique:
received: 05 06 2024
accepted: 21 10 2024
medline: 1 11 2024
pubmed: 1 11 2024
entrez: 1 11 2024
Statut: epublish

Résumé

Colorectal cancer is a leading cause of global mortality and presents a significant barrier to improving life expectancy. The primary objective of this study was to discern a unique differentially expressed gene (DEG) that exhibits a strong association with colorectal cancer. By achieving this goal, the research aims to contribute valuable insights to the field of translational medicine. We performed analysis of colorectal cancer microarray and the TCGA colon adenoma carcinoma (COAD) datasets to identify DEGs associated with COAD and common DEGs were selected. Furthermore, a pan-cancer analysis encompassing 33 different cancer types was performed to identify differential genes significantly expressed only in COAD. Then, comprehensively in-silico analysis including gene set enrichment analysis, constructing Protein-Protein interaction, co-expression, and competing endogenous RNA (ceRNA) networks, investigating the correlation between tumor-immune signatures in distinct tumor microenvironment and also the potential interactions between the identified gene and various drugs was executed. Further, the candidate gene was experimentally validated in tumoral colorectal tissues and colorectal adenomatous polyps by qRael-Time PCR. GUCA2A emerged as a significant DEG specific to colorectal cancer (|log2FC|> 1 and adjusted q-value < 0.05). Importantly, GUCA2A exhibited excellent diagnostic performance for COAD, with a 99.6% and 78% area under the curve (AUC) based on TCGA-COAD and colon cancer patients. In addition, GUCA2A expression in adenomatous polyps equal to or larger than 5 mm was significantly lower compared to smaller than 5 mm. Moreover, low expression of GUCA2A significantly impacted overall patient survival. Significant correlations were observed between tumor-immune signatures and GUCA2A expression. The ceRNA constructed included GUCA2A, 8 shared miRNAs, and 61 circRNAs. This study identifies GUCA2A as a promising prognostic and diagnostic biomarker for colorectal cancer. Further investigations are warranted to explore the potential of GUCA2A as a therapeutic biomarker.

Identifiants

pubmed: 39485546
doi: 10.1007/s10238-024-01512-y
pii: 10.1007/s10238-024-01512-y
doi:

Substances chimiques

Biomarkers, Tumor 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

251

Informations de copyright

© 2024. The Author(s).

Références

Organization, W.H., World health statistics 2018: monitoring health for the SDGs, sustainable development goals. 2018: World Health Organization.
Bray F, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.
pubmed: 30207593 doi: 10.3322/caac.21492
Siegel RL, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin. 2020;70(3):145–64.
pubmed: 32133645 doi: 10.3322/caac.21601
Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004;10(8):789–99.
pubmed: 15286780 doi: 10.1038/nm1087
Wang X, et al. Development and validation of a DNA repair gene signature for prognosis prediction in colon cancer. J Cancer. 2020;11(20):5918.
pubmed: 32922534 pmcid: 7477412 doi: 10.7150/jca.46328
Chen J, et al. ZMYND8 expression combined with pN and pM classification as a novel prognostic prediction model for colorectal cancer: based on TCGA and GEO database analysis. Cancer Biomark. 2020;28(2):201–11.
pubmed: 32224527 doi: 10.3233/CBM-191261
Zou J, et al. Mining the potential prognostic value of synaptosomal-associated protein 25 (SNAP25) in colon cancer based on stromal-immune score. PeerJ. 2020;8: e10142.
pubmed: 33150073 pmcid: 7583623 doi: 10.7717/peerj.10142
Zheng W, et al. Transcriptional information underlying the generation of CSCs and the construction of a nine-mRNA signature to improve prognosis prediction in colorectal cancer. Cancer Biol Ther. 2020;21(8):688–97.
pubmed: 32453965 pmcid: 7515529 doi: 10.1080/15384047.2020.1762419
Zhang R, et al. Mining featured biomarkers associated with vascular invasion in HCC by bioinformatics analysis with TCGA RNA sequencing data. Biomed Pharmacother. 2019;118: 109274.
pubmed: 31545220 doi: 10.1016/j.biopha.2019.109274
Al-Sheikh YA, et al. Screening for differentially-expressed microRNA biomarkers in Saudi colorectal cancer patients by small RNA deep sequencing. Int J Mol Med. 2019;44(6):2027–36.
pubmed: 31638163 pmcid: 6844639
Yamada A, et al. A RNA-Sequencing approach for the identification of novel long non-coding RNA biomarkers in colorectal cancer. Sci Rep. 2018;8(1):575.
pubmed: 29330370 pmcid: 5766599 doi: 10.1038/s41598-017-18407-6
O’Connell MJ, et al. Relationship between tumor gene expression and recurrence in four independent studies of patients with stage II/III colon cancer treated with surgery alone or surgery plus adjuvant fluorouracil plus leucovorin. J Clin Oncol. 2010;28(25):3937.
pubmed: 20679606 pmcid: 2940392 doi: 10.1200/JCO.2010.28.9538
Barrier A, et al. Stage II colon cancer prognosis prediction by tumor gene expression profiling. J Clin Oncol. 2006;24(29):4685–91.
pubmed: 16966692 doi: 10.1200/JCO.2005.05.0229
Liu X, et al. Identification of crucial genes and pathways associated with colorectal cancer by bioinformatics analysis. Oncol Lett. 2020;19(3):1881–9.
pubmed: 32194683 pmcid: 7039150
Shangguan H, Tan S, Zhang J. Bioinformatics analysis of gene expression profiles in hepatocellular carcinoma. Eur Rev Med Pharmacol Sci. 2015;19(11):2054–61.
pubmed: 26125269
Kosti A, et al. Microarray profile of human kidney from diabetes, renal cell carcinoma and renal cell carcinoma with diabetes. Genes Cancer. 2015;6(1–2):62.
pubmed: 25821562 pmcid: 4362485 doi: 10.18632/genesandcancer.51
Christgen M, et al. IPH-926 lobular breast cancer cells are triple-negative but their microarray profile uncovers a luminal subtype. Cancer Sci. 2013;104(12):1726–30.
pubmed: 24344720 pmcid: 7654255 doi: 10.1111/cas.12276
Hu Y, et al. Colorectal cancer susceptibility loci as predictive markers of rectal cancer prognosis after surgery. Genes Chromosom Cancer. 2018;57(3):140–9.
pubmed: 29119627 doi: 10.1002/gcc.22512
Kagawa Y, et al. Cell cycle-dependent Rho GTPase activity dynamically regulates cancer cell motility and invasion in vivo. PLoS ONE. 2013;8(12): e83629.
pubmed: 24386239 pmcid: 3875446 doi: 10.1371/journal.pone.0083629
Sveen A, et al. Transcriptome instability in colorectal cancer identified by exon microarray analyses: associations with splicing factor expression levels and patient survival. Genome medicine. 2011;3:1–13.
doi: 10.1186/gm248
Ågesen TH, et al. ColoGuideEx: a robust gene classifier specific for stage II colorectal cancer prognosis. Gut. 2012;61(11):1560–7.
pubmed: 22213796 doi: 10.1136/gutjnl-2011-301179
Bian Q, et al. Four targeted genes for predicting the prognosis of colorectal cancer: a bioinformatics analysis case. Oncol Lett. 2019;18(5):5043–54.
pubmed: 31612015 pmcid: 6781647
Ji F, Sadreyev RI. RNA-seq: basic bioinformatics analysis. Curr Protoc Mol Biol. 2018;124(1): e68.
pubmed: 30222249 pmcid: 6168365 doi: 10.1002/cpmb.68
Barrett T, et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 2012;41(D1):D991–5.
pubmed: 23193258 pmcid: 3531084 doi: 10.1093/nar/gks1193
Irizarry RA, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4(2):249–64.
pubmed: 12925520 doi: 10.1093/biostatistics/4.2.249
Ritchie ME, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47–e47.
pubmed: 25605792 pmcid: 4402510 doi: 10.1093/nar/gkv007
Tang Z, et al. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47(W1):W556–60.
pubmed: 31114875 pmcid: 6602440 doi: 10.1093/nar/gkz430
Tang G, Cho M, Wang X. OncoDB: an interactive online database for analysis of gene expression and viral infection in cancer. Nucleic Acids Res. 2022;50(D1):D1334–9.
pubmed: 34718715 doi: 10.1093/nar/gkab970
Chandrashekar DS, et al. UALCAN: an update to the integrated cancer data analysis platform. Neoplasia. 2022;25:18–27.
pubmed: 35078134 pmcid: 8788199 doi: 10.1016/j.neo.2022.01.001
Vasaikar SV, et al. LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res. 2018;46(D1):D956–63.
pubmed: 29136207 doi: 10.1093/nar/gkx1090
Kuleshov MV, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44(W1):W90–7.
pubmed: 27141961 pmcid: 4987924 doi: 10.1093/nar/gkw377
Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020;48(D1):D127–31.
pubmed: 31504780 doi: 10.1093/nar/gkz757
Dweep H, Gretz N, Sticht C. miRWalk database for miRNA–target interactions. RNA Mapp Method Protoc. 2014. https://doi.org/10.1007/978-1-4939-1062-5_25 .
doi: 10.1007/978-1-4939-1062-5_25
Agarwal V, et al., Predicting effective microRNA target sites in mammalian mRNAs. elife, 2015. 4 e05005.
Huang H-Y, et al. miRTarBase update 2022: an informative resource for experimentally validated miRNA–target interactions. Nucleic Acids Res. 2022;50(D1):D222–30.
pubmed: 34850920 doi: 10.1093/nar/gkab1079
Liu M, et al. Circbank: a comprehensive database for circRNA with standard nomenclature. RNA Biol. 2019;16(7):899–905.
pubmed: 31023147 pmcid: 6546381 doi: 10.1080/15476286.2019.1600395
Shannon P, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.
pubmed: 14597658 pmcid: 403769 doi: 10.1101/gr.1239303
Cerami E, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.
pubmed: 22588877 doi: 10.1158/2159-8290.CD-12-0095
Thul PJ, Lindskog C. The human protein atlas: a spatial map of the human proteome. Protein Sci. 2018;27(1):233–44.
pubmed: 28940711 doi: 10.1002/pro.3307
Ru B, et al. TISIDB: an integrated repository portal for tumor–immune system interactions. Bioinformatics. 2019;35(20):4200–2.
pubmed: 30903160 doi: 10.1093/bioinformatics/btz210
Freshour SL, et al. Integration of the drug-gene interaction database (DGIdb 4.0) with open crowdsource efforts. Nucleic Acids Res. 2021;49(D1):D1144–51.
pubmed: 33237278 doi: 10.1093/nar/gkaa1084
Abbott M, Ustoyev Y. Cancer and the immune system: the history and background of immunotherapy. In seminars in oncology nursing. Amsterdam: Elsevier; 2019.
Roma-Rodrigues C, et al. Targeting tumor microenvironment for cancer therapy. Int J Mol Sci. 2019;20(4):840.
pubmed: 30781344 pmcid: 6413095 doi: 10.3390/ijms20040840
Xia J et al., Single‐cell landscape and clinical outcomes of infiltrating B cells in colorectal cancer. Immunology, 2023
Yang W, et al. Integrated analysis of necroptosis-related genes for evaluating immune infiltration and colon cancer prognosis. Front Immunol. 2022. https://doi.org/10.3389/fimmu.2022.1085038 .
doi: 10.3389/fimmu.2022.1085038 pubmed: 36999166 pmcid: 9832027
Giannakis M, et al. Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep. 2016;15(4):857–65.
pubmed: 27149842 pmcid: 4850357 doi: 10.1016/j.celrep.2016.03.075
Seshagiri S, et al. Recurrent R-spondin fusions in colon cancer. Nature. 2012;488(7413):660–4.
pubmed: 22895193 pmcid: 3690621 doi: 10.1038/nature11282
Weinstein JN, et al. The cancer genome atlas pan-cancer analysis project. Nat Genet. 2013;45(10):1113–20.
pubmed: 24071849 pmcid: 3919969 doi: 10.1038/ng.2764
Network CGAR, Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM. The cancer genome atlas pan-cancer analysis project. Nat Genet. 2013;45(10):1113–20.
doi: 10.1038/ng.2764
Steinbrecher KA, et al. Increases in guanylin and uroguanylin in a mouse model of osmotic diarrhea are guanylate cyclase C—independent. Gastroenterology. 2001;121(5):1191–202.
pubmed: 11677212 doi: 10.1053/gast.2001.28680
Furuya S, Naruse S, Hayakawa T. Intravenous injection of guanylin induces mucus secretion from goblet cells in rat duodenal crypts. Anat Embryol. 1998;197:359–67.
doi: 10.1007/s004290050146
Kita T, et al. Marked increase of guanylin secretion in response to salt loading in the rat small intestine. Am J Physiol Gastrointest Liver Physiol. 1999;277(5):960–6. https://doi.org/10.1152/ajpgi.1999.277.5.G960 .
doi: 10.1152/ajpgi.1999.277.5.G960
Xi Y, Xu P. Global colorectal cancer burden in 2020 and projections to 2040. Trans Oncol. 2021;14(10): 101174.
doi: 10.1016/j.tranon.2021.101174
Zhang H, et al. Integrated analysis of oncogenic networks in colorectal cancer identifies GUCA2A as a molecular marker. Biochem Res Int. 2019. https://doi.org/10.1155/2019/6469420 .
doi: 10.1155/2019/6469420 pubmed: 31467713 pmcid: 6701329
Piroozkhah M, et al. Guanylate cyclase-C signaling axis as a theragnostic target in colorectal cancer: a systematic review of literature. Front Oncol. 2023;13:1277265.
pubmed: 37927469 pmcid: 10623427 doi: 10.3389/fonc.2023.1277265
Xie Y-H, Chen Y-X, Fang J-Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther. 2020;5(1):22.
pubmed: 32296018 pmcid: 7082344 doi: 10.1038/s41392-020-0116-z
Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer: a review. JAMA. 2021;325(7):669–85.
pubmed: 33591350 doi: 10.1001/jama.2021.0106
Cardoso R, et al. Colorectal cancer incidence, mortality, and stage distribution in European countries in the colorectal cancer screening era: an international population-based study. Lancet Oncol. 2021;22(7):1002–13.
pubmed: 34048685 doi: 10.1016/S1470-2045(21)00199-6
Liu Y, et al. Identification of hub genes in colorectal adenocarcinoma by integrated bioinformatics. Front Cell Develop Biol. 2022. https://doi.org/10.3389/fcell.2022.897568 .
doi: 10.3389/fcell.2022.897568
Morson B. President’s address. The polyp-cancer sequence in the large bowel. Proc R Soc Med. 1974;67(61):451–7.
pubmed: 4853754 pmcid: 1645739
Stryker SJ, et al. Natural history of untreated colonic polyps. Gastroenterology. 1987;93(5):1009–13.
pubmed: 3653628 doi: 10.1016/0016-5085(87)90563-4
Kuhn M. Molecular physiology of membrane guanylyl cyclase receptors. Physiol Rev. 2016;96(2):751–804.
pubmed: 27030537 doi: 10.1152/physrev.00022.2015
Camilleri M. Guanylate cyclase C agonists: emerging gastrointestinal therapies and actions. Gastroenterology. 2015;148(3):483–7.
pubmed: 25576859 doi: 10.1053/j.gastro.2015.01.003
Steinbrecher KA, et al. Murine guanylate cyclase C regulates colonic injury and inflammation. J Immunol. 2011;186(12):7205–14.
pubmed: 21555532 doi: 10.4049/jimmunol.1002469
Brenna Ø, et al. The guanylate cyclase-C signaling pathway is down-regulated in inflammatory bowel disease. Scand J Gastroenterol. 2015;50(10):1241–52.
pubmed: 25979109 pmcid: 4673555 doi: 10.3109/00365521.2015.1038849
Pattison AM, et al. Guanylyl cyclase C signaling axis and colon cancer prevention. World J Gastroenterol. 2016;22(36):8070.
pubmed: 27688649 pmcid: 5037076 doi: 10.3748/wjg.v22.i36.8070
Blomain ES, et al. Translating colorectal cancer prevention through the guanylyl cyclase C signaling axis. Expert Rev Clin Pharmacol. 2013;6(5):557–64.
pubmed: 23971873 pmcid: 4048542 doi: 10.1586/17512433.2013.827406
Basu N, Arshad N, Visweswariah SS. Receptor guanylyl cyclase C (GC-C): regulation and signal transduction. Mol Cell Biochem. 2010;334:67–80.
pubmed: 19960363 doi: 10.1007/s11010-009-0324-x
Li P, et al. Guanylyl cyclase C suppresses intestinal tumorigenesis by restricting proliferation and maintaining genomic integrity. Gastroenterology. 2007;133(2):599–607.
pubmed: 17681179 doi: 10.1053/j.gastro.2007.05.052
Lin JE, et al. The hormone receptor GUCY2C suppresses intestinal tumor formation by inhibiting AKT signaling. Gastroenterology. 2010;138(1):241–54.
pubmed: 19737566 doi: 10.1053/j.gastro.2009.08.064
Bashir B, et al. Silencing the GUCA2A-GUCY2C tumor suppressor axis in CIN, serrated, and MSI colorectal neoplasia. Hum Pathol. 2019;87:103–14.
pubmed: 30716341 pmcid: 6988773 doi: 10.1016/j.humpath.2018.11.032
De La Cena KO, et al. Transmembrane and immunoglobulin domain containing 1, a putative tumor suppressor, induces G2/M cell cycle checkpoint arrest in colon cancer cells. Am J Pathol. 2021;191(1):157–67.
pubmed: 33129760 doi: 10.1016/j.ajpath.2020.09.015
Mu L, et al. The role of TMIGD1 as a Tumor suppressor in colorectal cancer. Genet Test Mol Biomarkers. 2022;26(4):174–83.
pubmed: 35481970 doi: 10.1089/gtmb.2021.0169
Ding X, et al. SLC26A3 (DRA) prevents TNF-alpha-induced barrier dysfunction and dextran sulfate sodium-induced acute colitis. Lab Invest. 2018;98(4):462–76.
pubmed: 29330471 doi: 10.1038/s41374-017-0005-4
Zhang M, et al. Physiological and pathophysiological role of ion channels and transporters in the colorectum and colorectal cancer. J Cell Mol Med. 2020;24(17):9486–94.
pubmed: 32662230 pmcid: 7520301 doi: 10.1111/jcmm.15600
Scott RO, Thelin WR, Milgram SL. A novel PDZ protein regulates the activity of guanylyl cyclase C, the heat-stable enterotoxin receptor. J Biol Chem. 2002;277(25):22934–41.
pubmed: 11950846 doi: 10.1074/jbc.M202434200
Zachos NC, et al. Elevated intracellular calcium stimulates NHE3 activity by an IKEPP (NHERF4) dependent mechanism. Cell Physiol Biochem. 2008;22(5–6):693–704.
pubmed: 19088451 pmcid: 3740532 doi: 10.1159/000185553
Gu Y, et al. NHERF1 regulates the progression of colorectal cancer through the interplay with VEGFR2 pathway. Oncotarget. 2017;8(5):7753.
pubmed: 27999191 doi: 10.18632/oncotarget.13949
Leiphrakpam PD, et al. Prognostic and therapeutic implications of NHERF1 expression and regulation in colorectal cancer. J Surg Oncol. 2020;121(3):547–60.
pubmed: 31867736 doi: 10.1002/jso.25805
Chen X, et al. Long non-coding RNAs and complex diseases: from experimental results to computational models. Brief Bioinform. 2017;18(4):558–76.
pubmed: 27345524
Chen X, et al. MicroRNAs and complex diseases: from experimental results to computational models. Brief Bioinform. 2019;20(2):515–39.
pubmed: 29045685 doi: 10.1093/bib/bbx130
Chen X, et al. Predicting miRNA–disease association based on inductive matrix completion. Bioinformatics. 2018;34(24):4256–65.
pubmed: 29939227 doi: 10.1093/bioinformatics/bty503
Chen X, et al. BNPMDA: bipartite network projection for MiRNA–disease association prediction. Bioinformatics. 2018;34(18):3178–86.
pubmed: 29701758 doi: 10.1093/bioinformatics/bty333
Chen X, et al. MDHGI: matrix decomposition and heterogeneous graph inference for miRNA-disease association prediction. PLoS Comput Biol. 2018;14(8): e1006418.
pubmed: 30142158 pmcid: 6126877 doi: 10.1371/journal.pcbi.1006418
Chen X, Huang L. LRSSLMDA: laplacian regularized sparse subspace learning for MiRNA-disease association prediction. PLoS Comput Biol. 2017;13(12): e1005912.
pubmed: 29253885 pmcid: 5749861 doi: 10.1371/journal.pcbi.1005912
Salmena L, et al. A ceRNA hypothesis: the rosetta stone of a hidden RNA language? Cell. 2011;146(3):353–8.
pubmed: 21802130 pmcid: 3235919 doi: 10.1016/j.cell.2011.07.014
Yan C, et al. PVT 1-derived miR-1207-5p promotes breast cancer cell growth by targeting STAT 6. Cancer Sci. 2017;108(5):868–76.
pubmed: 28235236 pmcid: 5448618 doi: 10.1111/cas.13212
Wang X, et al. Plasma microRNA-1207–5p as a potential biomarker for diagnosis and prognosis of colorectal cancer. Clin Lab. 2020. https://doi.org/10.7754/Clin.Lab.2020.191269 .
doi: 10.7754/Clin.Lab.2020.191269 pubmed: 33337840
Ng L, et al. High Levels of Tumor miR-187-3p—a potential tumor-suppressor microRNA—Are correlated with poor prognosis in colorectal cancer. Cells. 2022;11(15):2421.
pubmed: 35954265 pmcid: 9367907 doi: 10.3390/cells11152421
Sun J, et al. Tumor exosome promotes Th17 cell differentiation by transmitting the lncRNA CRNDE-h in colorectal cancer. Cell Death Dis. 2021;12(1):123.
pubmed: 33495437 pmcid: 7835218 doi: 10.1038/s41419-020-03376-y
Hansen FJ, et al. Tumor infiltration with CD20+ CD73+ B cells correlates with better outcome in colorectal cancer. Int J Mol Sci. 2022;23(9):5163.
pubmed: 35563553 pmcid: 9101418 doi: 10.3390/ijms23095163
Nersesian S, et al. NK cell infiltration is associated with improved overall survival in solid cancers: a systematic review and meta-analysis. Trans Oncol. 2021;14(1): 100930.
doi: 10.1016/j.tranon.2020.100930
Forssell J, et al. High macrophage infiltration along the tumor front correlates with improved survival in colon cancer. Clin Cancer Res. 2007;13(5):1472–9.
pubmed: 17332291 doi: 10.1158/1078-0432.CCR-06-2073
Oosterling SJ, et al. Macrophages direct tumour histology and clinical outcome in a colon cancer model. J Pathol A J Pathol Soc Great Britain Ireland. 2005;207(2):147–55.
Andrzej P, et al. Influence of lactose intolerance on colorectal cancer incidence in the Polish population. Hered Cancer Clin Pract. 2015. https://doi.org/10.1186/1897-4287-13-S1-A7 .
doi: 10.1186/1897-4287-13-S1-A7 pmcid: 4565464
Kurniali PC, Hrinczenko B, Al-Janadi A. Management of locally advanced and metastatic colon cancer in elderly patients. World J Gastroenterol: WJG. 2014;20(8):1910.
pubmed: 24616568 pmcid: 3934461 doi: 10.3748/wjg.v20.i8.1910
Esan O, Wierzbicki AS. Volanesorsen in the treatment of familial chylomicronemia syndrome or hypertriglyceridaemia: design, development and place in therapy. Drug Design Develop Ther. 2020;14:2623–36.
doi: 10.2147/DDDT.S224771
Hsu S-H, et al. The association between hypertriglyceridemia and colorectal cancer: a long-term community cohort study in Taiwan. Int J Environ Res Public Health. 2022;19(13):7804.
pubmed: 35805464 pmcid: 9265720 doi: 10.3390/ijerph19137804

Auteurs

Pooya Jalali (P)

Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O. Box: 19857-17411, Tehran, Iran.

Shahram Aliyari (S)

Department of Bioinformatics, Kish International Campus University of Tehran, Kish, Iran.
Division of Applied Bioinformatics, German Cancer Research Center DKFZ, Heidelberg, Germany.

Marziyeh Etesami (M)

Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O. Box: 19857-17411, Tehran, Iran.

Mahsa Saeedi Niasar (M)

Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O. Box: 19857-17411, Tehran, Iran.

Sahar Taher (S)

Islamic Azad University, Tabriz Branch, Tabriz, Iran.

Kaveh Kavousi (K)

Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.

Ehsan Nazemalhosseini Mojarad (E)

Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O. Box: 19857-17411, Tehran, Iran. ehsanmojarad@gmail.com.
Department of Surgery, Leiden University Medical Center, Leiden, Netherlands. ehsanmojarad@gmail.com.

Zahra Salehi (Z)

Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran. zahra.salehi6463@yahoo.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH