Dental stem cell dynamics in periodontal ligament regeneration: from mechanism to application.


Journal

Stem cell research & therapy
ISSN: 1757-6512
Titre abrégé: Stem Cell Res Ther
Pays: England
ID NLM: 101527581

Informations de publication

Date de publication:
31 Oct 2024
Historique:
received: 21 08 2024
accepted: 17 10 2024
medline: 1 11 2024
pubmed: 1 11 2024
entrez: 1 11 2024
Statut: epublish

Résumé

Periodontitis, a globally prevalent chronic inflammatory disease is characterized by the progressive degradation of tooth-supporting structures, particularly the periodontal ligament (PDL), which can eventually result in tooth loss. Despite the various clinical interventions available, most focus on symptomatic relief and lack substantial evidence of supporting the functional regeneration of the PDL. Dental stem cells (DSCs), with their homology and mesenchymal stem cell (MSC) properties, have gained significant attention as a potential avenue for PDL regeneration. Consequently, multiple therapeutic strategies have been developed to enhance the efficacy of DSC-based treatments and improve clinical outcomes. This review examines the mechanisms by which DSCs and their derivatives promote PDL regeneration, and explores the diverse applications of exogenous implantation and endogenous regenerative technology (ERT) aimed at amplifying the regenerative capacity of endogenous DSCs. Additionally, the persistent challenges and controversies surrounding DSC therapies are discussed, alongside an evaluation of the limitations in current research on the underlying mechanisms and innovative applications of DSCs in PDL regeneration with the aim of providing new insights for future development. Periodontitis, a chronic inflammatory disease, represents a major global public health concern, affecting a significant proportion of the population and standing as the leading cause tooth loss in adults. The functional periodontal ligament (PDL) plays an indispensable role in maintaining periodontal health, as its structural and biological integrity is crucial for the long-term prognosis of periodontal tissues. It is widely recognized as the cornerstone of periodontal regeneration Despite the availability of various treatments, ranging from nonsurgical interventions to guided tissue regeneration (GTR) techniques, these methods have shown limited success in achieving meaningful PDL regeneration. As a result, the inability to fully restore PDL function underscores the urgent need for innovative therapeutic strategies at reconstructing this essential structure. Stem cell therapy, known for its regenerative and immunomodulatory potential, offers a promising approach for periodontal tissue repair. Their application marks a significant paradigm shift in the treatment of periodontal diseases, opening new avenues for functional PDL regeneration. However, much of the current research has primarily focused on the regeneration of alveolar bone and gingiva, as these hard and soft tissues can be more easily evaluated through visual assessment. The complexity of PDL structure, coupled with the intricate interactions among cellular and molecular components, presents significant scientific and clinical hurdles in translating DSC research into practical therapeutic applications. This review provides a thorough exploration of DSC dynamics in periodontal regeneration, detailing their origins, properties, and derived products, while also examining their potential mechanisms and applications in PDL regeneration. It offers an in-depth analysis of the current research, landscape, acknowledging both the progress made and the challenges that remain in bridging the gap between laboratory findings and clinical implementation. Finally, the need for continued investigation into the intricate mechanisms governing DSC behavior and the optimization of their use in regenerative therapies for periodontal diseases is also emphasized.

Identifiants

pubmed: 39482701
doi: 10.1186/s13287-024-04003-9
pii: 10.1186/s13287-024-04003-9
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

389

Subventions

Organisme : Science and Technology Projects in Guangzhou
ID : 2024A04J6615

Informations de copyright

© 2024. The Author(s).

Références

Eke PI, Borgnakke WS, Genco RJ. Recent epidemiologic trends in periodontitis in the USA. Periodontol. 2000. 2020;82:257 – 67.
Chen MX, Zhong YJ, Dong QQ, Wong HM, Wen YF. Global, regional, and national burden of severe periodontitis, 1990–2019: an analysis of the global burden of Disease Study 2019. J Clin Periodontol. 2021;48:1165–88.
pubmed: 34101223 doi: 10.1111/jcpe.13506
Fakheran O, Birang R, Schmidlin PR, Razavi SM, Behfarnia P. Retro MTA and tricalcium phosphate/retro MTA for guided tissue regeneration of periodontal dehiscence defects in a dog model: a pilot study. Biomaterials Res. 2019;23:14.
doi: 10.1186/s40824-019-0163-0
Paknejad M, Eslaminejad MB, Ghaedi B, Rokn A, Khorsand A, Etemad-Moghadam S, et al. Isolation and Assessment of mesenchymal stem cells derived from bone marrow: histologic and histomorphometric study in a Canine Periodontal defect. J Oral Implantol. 2015;41:284–91.
pubmed: 24383495 doi: 10.1563/AAID-JOI-D-13-00220
Pellegrini G, Pagni G, Rasperini G. Surgical approaches based on Biological objectives: GTR versus GBR techniques. Int J Dent. 2013;2013:521547.
pubmed: 23843792 pmcid: 3697289 doi: 10.1155/2013/521547
Aydin S, Şahin F. Stem cells derived from Dental tissues. Adv Exp Med Biol. 2019;1144:123–32.
pubmed: 30635857 doi: 10.1007/5584_2018_333
Sui B, Zheng C, Zhao W, Xuan K, Li B, Jin Y. Mesenchymal condensation in tooth development and regeneration: a focus on translational aspects of organogenesis. Physiol Rev. 2023;103:1899–964.
pubmed: 36656056 doi: 10.1152/physrev.00019.2022
Andrukhov O, Behm C, Blufstein A, Rausch-Fan X. Immunomodulatory properties of dental tissue-derived mesenchymal stem cells: implication in disease and tissue regeneration. World J Stem Cells. 2019;11:604–17.
pubmed: 31616538 pmcid: 6789188 doi: 10.4252/wjsc.v11.i9.604
Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. P Natl Acad Sci Usa. 2000;97:13625–30.
doi: 10.1073/pnas.240309797
Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A. 2003;100:5807–12.
pubmed: 12716973 pmcid: 156282 doi: 10.1073/pnas.0937635100
Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364:149–55.
pubmed: 15246727 doi: 10.1016/S0140-6736(04)16627-0
Morsczeck C, Gotz W, Schierholz J, Zeilhofer F, Kuhn U, Mohl C, et al. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol. 2005;24:155–65.
pubmed: 15890265 doi: 10.1016/j.matbio.2004.12.004
Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS ONE. 2006;1:e79.
pubmed: 17183711 pmcid: 1762318 doi: 10.1371/journal.pone.0000079
Zhang Q, Shi S, Liu Y, Uyanne J, Shi Y, Shi S, et al. Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol. 2009;183:7787–98.
pubmed: 19923445 doi: 10.4049/jimmunol.0902318
Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7:1535750.
pubmed: 30637094 pmcid: 6322352 doi: 10.1080/20013078.2018.1535750
Janockova J, Slovinska L, Harvanova D, Spakova T, Rosocha J. New therapeutic approaches of mesenchymal stem cells-derived exosomes. J Biomed Sci. 2021;28:39.
pubmed: 34030679 pmcid: 8143902 doi: 10.1186/s12929-021-00736-4
Li Y, Duan X, Chen Y, Liu B, Chen G. Dental stem cell-derived extracellular vesicles as promising therapeutic agents in the treatment of diseases. Int J Oral Sci. 2022;14:2.
pubmed: 34980877 pmcid: 8724288 doi: 10.1038/s41368-021-00152-2
Ma L, Rao N, Jiang H, Dai Y, Yang S, Yang H, et al. Small extracellular vesicles from dental follicle stem cells provide biochemical cues for periodontal tissue regeneration. Stem Cell Res Ther. 2022;13:92.
pubmed: 35241181 pmcid: 8895915 doi: 10.1186/s13287-022-02767-6
Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123:4195–200.
pubmed: 21123617 pmcid: 2995612 doi: 10.1242/jcs.023820
Kapp TG, Rechenmacher F, Neubauer S, Maltsev OV, Cavalcanti-Adam EA, Zarka R, et al. A comprehensive evaluation of the Activity and Selectivity Profile of ligands for RGD-binding integrins. Sci Rep-Uk. 2017;7:39805.
doi: 10.1038/srep39805
Lin H, Chen H, Zhao X, Chen Z, Zhang P, Tian Y, et al. Advances in mesenchymal stem cell conditioned medium-mediated periodontal tissue regeneration. J Transl Med. 2021;19:456.
pubmed: 34736500 pmcid: 8567704 doi: 10.1186/s12967-021-03125-5
Xiong X, Yang X, Dai H, Feng G, Zhang Y, Zhou J, et al. Extracellular matrix derived from human urine-derived stem cells enhances the expansion, adhesion, spreading, and differentiation of human periodontal ligament stem cells. Stem Cell Res Ther. 2019;10:396.
pubmed: 31852539 pmcid: 6921428 doi: 10.1186/s13287-019-1483-7
Tavelli L, McGuire MK, Zucchelli G, Rasperini G, Feinberg SE, Wang H, et al. Extracellular matrix-based scaffolding technologies for periodontal and peri-implant soft tissue regeneration. J Periodontol. 2020;91:17–25.
pubmed: 31475361 doi: 10.1002/JPER.19-0351
Takewaki M, Kajiya M, Takeda K, Sasaki S, Motoike S, Komatsu N, et al. MSC/ECM Cellular complexes Induce Periodontal tissue regeneration. J Dent Res. 2017;96:984–91.
pubmed: 28521114 doi: 10.1177/0022034517708770
Huang CC, Narayanan R, Warshawsky N, Ravindran S. Dual ECM biomimetic scaffolds for Dental Pulp Regenerative Applications. Front Physiol. 2018;9:495.
pubmed: 29887803 pmcid: 5981804 doi: 10.3389/fphys.2018.00495
Nowwarote N, Petit S, Ferre FC, Dingli F, Laigle V, Loew D, et al. Extracellular Matrix Derived from Dental Pulp Stem cells promotes mineralization. Front Bioeng Biotechnol. 2021;9:740712.
pubmed: 35155398 doi: 10.3389/fbioe.2021.740712
Phothichailert S, Nowwarote N, Fournier BPJ, Trachoo V, Roytrakul S, Namangkalakul W, et al. Effects of decellularized extracellular matrix derived from Jagged1-treated human dental pulp stem cells on biological responses of stem cells isolated from apical papilla. Front Cell Dev Biology. 2022;10:948812.
doi: 10.3389/fcell.2022.948812
Nagata M, Iwasaki K, Akazawa K, Komaki M, Yokoyama N, Izumi Y, et al. Conditioned medium from Periodontal ligament stem cells enhances Periodontal Regeneration. Tissue Eng Part A. 2017;23:367–77.
pubmed: 28027709 pmcid: 5444511 doi: 10.1089/ten.tea.2016.0274
Qiu J, Wang X, Zhou H, Zhang C, Wang Y, Huang J, et al. Enhancement of periodontal tissue regeneration by conditioned media from gingiva-derived or periodontal ligament-derived mesenchymal stem cells: a comparative study in rats. Stem Cell Res Ther. 2020;11:42.
pubmed: 32014015 pmcid: 6998241 doi: 10.1186/s13287-019-1546-9
de Jong T, Bakker AD, Everts V, Smit TH. The intricate anatomy of the periodontal ligament and its development: lessons for periodontal regeneration. J Periodontal Res. 2017;52:965–74.
pubmed: 28635007 doi: 10.1111/jre.12477
Strydom H, Maltha JC, Kuijpers-Jagtman AM, Von den Hoff JW. The oxytalan fibre network in the periodontium and its possible mechanical function. Arch Oral Biol. 2012;57:1003–11.
pubmed: 22784380 doi: 10.1016/j.archoralbio.2012.06.003
Sodek J. A comparison of the rates of synthesis and turnover of collagen and non-collagen proteins in adult rat periodontal tissues and skin using a microassay. Arch Oral Biol. 1977;22:655–65.
pubmed: 272138 doi: 10.1016/0003-9969(77)90095-4
Zhang T, Yu J, Wang G, Zhang R. Amyloid precursor protein binds with TNFRSF21 to induce neural inflammation in Alzheimer’s Disease. Eur J Pharm Sci. 2021;157:105598.
pubmed: 33075465 doi: 10.1016/j.ejps.2020.105598
Scheres N, Laine ML, Sipos PM, Bosch-Tijhof CJ, Crielaard W, de Vries TJ, et al. Periodontal ligament and gingival fibroblasts from periodontitis patients are more active in interaction with Porphyromonas gingivalis. J Periodontal Res. 2011;46:407–16.
pubmed: 21332474 doi: 10.1111/j.1600-0765.2011.01353.x
Chin YT, Liu CM, Chen TY, Chung YY, Lin CY, Hsiung CN, et al. 2,3,5,4’-tetrahydroxystilbene-2-o-beta-d-glucoside-stimulated dental pulp stem cells-derived conditioned medium enhances cell activity and anti-inflammation. J Dent Sci. 2021;16:586–98.
pubmed: 33854707 doi: 10.1016/j.jds.2020.10.014
Iwasaki K, Komaki M, Akazawa K, Nagata M, Yokoyama N, Watabe T, et al. Spontaneous differentiation of periodontal ligament stem cells into myofibroblast during ex vivo expansion. J Cell Physiol. 2019;234:20377–91.
pubmed: 30963561 doi: 10.1002/jcp.28639
Zhang W, Zhou L, Dang J, Zhang X, Wang J, Chen Y, et al. Human gingiva-derived mesenchymal stem cells ameliorate streptozoticin-induced T1DM in mice via suppression of T effector cells and Up-regulating Treg subsets. Sci Rep. 2017;7:15249.
pubmed: 29127315 pmcid: 5681565 doi: 10.1038/s41598-017-14979-5
Luchian I, Goriuc A, Sandu D, Covasa M. The role of Matrix metalloproteinases (MMP-8, MMP-9, MMP-13) in Periodontal and Peri-implant pathological processes. Int J Mol Sci. 2022;23.
Kawagoe M, Tsuruga E, Oka K, Sawa Y, Ishikawa H. Matrix metalloproteinase-2 degrades fibrillin-1 and fibrillin-2 of oxytalan fibers in the human eye and periodontal ligaments in vitro. Acta Histochem Cytochem. 2013;46:153–9.
pubmed: 24194629 pmcid: 3813822 doi: 10.1267/ahc.13024
Zeng W, Song Y, Wang R, He R, Wang T. Neutrophil elastase: from mechanisms to therapeutic potential. J Pharm Anal. 2023;13:355–66.
pubmed: 37181292 pmcid: 10173178 doi: 10.1016/j.jpha.2022.12.003
Hernandez M, Gamonal J, Tervahartiala T, Mantyla P, Rivera O, Dezerega A, et al. Associations between matrix metalloproteinase-8 and – 14 and myeloperoxidase in gingival crevicular fluid from subjects with progressive chronic periodontitis: a longitudinal study. J Periodontol. 2010;81:1644–52.
pubmed: 20653434 doi: 10.1902/jop.2010.100196
Edwards DR, Murphy G, Reynolds JJ, Whitham SE, Docherty AJ, Angel P, et al. Transforming growth factor beta modulates the expression of collagenase and metalloproteinase inhibitor. Embo J. 1987;6:1899–904.
pubmed: 2820711 pmcid: 553574 doi: 10.1002/j.1460-2075.1987.tb02449.x
Kanji S, Sarkar R, Pramanik A, Kshirsagar S, Greene CJ, Das H. Dental pulp-derived stem cells inhibit osteoclast differentiation by secreting osteoprotegerin and deactivating AKT signalling in myeloid cells. J Cell Mol Med. 2021;25:2390–403.
pubmed: 33511706 pmcid: 7933945 doi: 10.1111/jcmm.16071
Li N, Zhang Y, Nepal N, Li G, Yang N, Chen H, et al. Dental pulp stem cells overexpressing hepatocyte growth factor facilitate the repair of DSS-induced ulcerative colitis. Stem Cell Res Ther. 2021;12:30.
pubmed: 33413675 pmcid: 7792189 doi: 10.1186/s13287-020-02098-4
Kwack KH, Lee JM, Park SH, Lee HW. Human Dental Pulp Stem cells suppress Alloantigen-induced immunity by Stimulating T Cells to release transforming growth factor Beta. J Endod. 2017;43:100–8.
pubmed: 27871783 doi: 10.1016/j.joen.2016.09.005
Tomic S, Djokic J, Vasilijic S, Vucevic D, Todorovic V, Supic G, et al. Immunomodulatory properties of mesenchymal stem cells derived from dental pulp and dental follicle are susceptible to activation by toll-like receptor agonists. Stem Cells Dev. 2011;20:695–708.
pubmed: 20731536 doi: 10.1089/scd.2010.0145
Liu P, Zhang Q, Mi J, Wang S, Xu Q, Zhuang D, et al. Exosomes derived from stem cells of human deciduous exfoliated teeth inhibit angiogenesis in vivo and in vitro via the transfer of mir-100-5p and miR-1246. Stem Cell Res Ther. 2022;13:89.
pubmed: 35241153 pmcid: 8895508 doi: 10.1186/s13287-022-02764-9
Chen YR, Lai PL, Chien Y, Lee PH, Lai YH, Ma HI et al. Improvement of Impaired Motor Functions by Human Dental Exfoliated Deciduous Teeth Stem Cell-Derived Factors in a Rat Model of Parkinson’s Disease. Int J Mol Sci. 2020;21.
Huang CY, Vesvoranan O, Yin X, Montoya A, Londono V, Sawatari Y, et al. Anti-inflammatory effects of Conditioned Medium of Periodontal ligament-derived stem cells on chondrocytes, synoviocytes, and Meniscus cells. Stem Cells Dev. 2021;30:537–47.
pubmed: 33757298 doi: 10.1089/scd.2021.0010
Jing X, Wang S, Tang H, Li D, Zhou F, Xin L, et al. Dynamically Bioresponsive DNA Hydrogel Incorporated with Dual-Functional Stem cells from apical papilla-derived Exosomes promotes Diabetic Bone Regeneration. Acs Appl Mater Interfaces. 2022;14:16082–99.
pubmed: 35344325 doi: 10.1021/acsami.2c02278
Wang X, Zhao S, Lai J, Guan W, Gao Y. Anti-inflammatory, antioxidant, and Antifibrotic effects of Gingival-Derived MSCs on Bleomycin-Induced Pulmonary Fibrosis in mice. Int J Mol Sci. 2021;23.
Hu J, Cao Y, Xie Y, Wang H, Fan Z, Wang J, et al. Periodontal regeneration in swine after cell injection and cell sheet transplantation of human dental pulp stem cells following good manufacturing practice. Stem Cell Res Ther. 2016;7:130.
pubmed: 27613503 pmcid: 5017121 doi: 10.1186/s13287-016-0362-8
Lee AE, Choi JG, Shi SH, He P, Zhang QZ, Le AD. DPSC-Derived Extracellular vesicles promote rat Jawbone Regeneration. J Dent Res. 2023;102:313–21.
pubmed: 36348514 doi: 10.1177/00220345221133716
Lei F, Li M, Lin T, Zhou H, Wang F, Su X. Treatment of inflammatory bone loss in periodontitis by stem cell-derived exosomes. Acta Biomater. 2022;141:333–43.
pubmed: 34979326 doi: 10.1016/j.actbio.2021.12.035
Maeda K, Takahashi N, Kobayashi Y. Roles of wnt signals in bone resorption during physiological and pathological states. J Mol Med (Berl). 2013;91:15–23.
pubmed: 23111637 doi: 10.1007/s00109-012-0974-0
Nakao Y, Fukuda T, Zhang Q, Sanui T, Shinjo T, Kou X, et al. Exosomes from TNF-alpha-treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss. Acta Biomater. 2021;122:306–24.
pubmed: 33359765 doi: 10.1016/j.actbio.2020.12.046
Leibbrandt A, Penninger JM. RANK/RANKL: regulators of immune responses and bone physiology. Ann N Y Acad Sci. 2008;1143:123–50.
pubmed: 19076348 doi: 10.1196/annals.1443.016
Tsukasaki M, Komatsu N, Nagashima K, Nitta T, Pluemsakunthai W, Shukunami C, et al. Host defense against oral microbiota by bone-damaging T cells. Nat Commun. 2018;9:701.
pubmed: 29453398 pmcid: 5816021 doi: 10.1038/s41467-018-03147-6
Liu Y, Wang L, Liu S, Liu D, Chen C, Xu X, et al. Transplantation of SHED prevents bone loss in the early phase of ovariectomy-induced osteoporosis. J Dent Res. 2014;93:1124–32.
pubmed: 25252877 pmcid: 4212465 doi: 10.1177/0022034514552675
Maeda A, Kikuiri T, Yoshimura Y, Yawaka Y, Shirakawa T. Bone resorption improvement by conditioned medium of stem cells from human exfoliated deciduous teeth in ovariectomized mice. Exp Ther Med. 2022;23:299.
pubmed: 35340871 pmcid: 8931624 doi: 10.3892/etm.2022.11228
Liu J, Chen B, Bao J, Zhang Y, Lei L, Yan F. Macrophage polarization in periodontal ligament stem cells enhanced periodontal regeneration. Stem Cell Res Ther. 2019;10:320.
pubmed: 31730019 pmcid: 6858751 doi: 10.1186/s13287-019-1409-4
Wu J, Chen L, Wang R, Song Z, Shen Z, Zhao Y, et al. Exosomes secreted by stem cells from human exfoliated deciduous Teeth promote alveolar bone defect repair through the regulation of Angiogenesis and Osteogenesis. Acs Biomater Sci Eng. 2019;5:3561–71.
pubmed: 33405738 doi: 10.1021/acsbiomaterials.9b00607
Tomasello L, Mauceri R, Coppola A, Pitrone M, Pizzo G, Campisi G, et al. Mesenchymal stem cells derived from inflamed dental pulpal and gingival tissue: a potential application for bone formation. Stem Cell Res Ther. 2017;8:179.
pubmed: 28764802 pmcid: 5540218 doi: 10.1186/s13287-017-0633-z
Al Bahrawy M, Ghaffar K, Gamal A, El-Sayed K, Iacono V. Effect of inflammation on Gingival Mesenchymal Stem/Progenitor cells’ Proliferation and Migration through Microperforated membranes: an in Vitro Study. Stem Cells Int. 2020;2020:5373418.
pubmed: 32148522 pmcid: 7054781 doi: 10.1155/2020/5373418
Park JY, Jeon SH, Choung PH. Efficacy of periodontal stem cell transplantation in the treatment of advanced periodontitis. Cell Transpl. 2011;20:271–85.
doi: 10.3727/096368910X519292
Li X, He XT, Kong DQ, Xu XY, Wu RX, Sun LJ, et al. M2 macrophages enhance the Cementoblastic differentiation of Periodontal ligament stem cells via the akt and JNK pathways. Stem Cells. 2019;37:1567–80.
pubmed: 31400241 doi: 10.1002/stem.3076
Wei X, Guo S, Liu Q, Liu L, Huo F, Wu Y et al. Dental follicle stem cells promote Periodontal regeneration through periostin-mediated macrophage infiltration and reprogramming in an inflammatory microenvironment. Int J Mol Sci. 2023;24.
Liu L, Wen Y, Chen L, Li M, Yu J, Tian W, et al. Xenogenous implanted dental follicle stem cells promote periodontal regeneration through inducing the N2 phenotype of neutrophils. Stem Cell Res Ther. 2024;15:270.
pubmed: 39183362 pmcid: 11346187 doi: 10.1186/s13287-024-03882-2
Misawa M, Silverio RK, Nociti FJ, Albiero ML, Saito MT, Nobrega SR, et al. Periodontal ligament-derived mesenchymal stem cells modulate neutrophil responses via paracrine mechanisms. J Periodontol. 2019;90:747–55.
pubmed: 30644104 doi: 10.1002/JPER.18-0220
Yang Z, Ma L, Du C, Wang J, Zhang C, Hu L, et al. Dental pulp stem cells accelerate wound healing through CCL2-induced M2 macrophages polarization. Iscience. 2023;26:108043.
pubmed: 37829207 pmcid: 10565783 doi: 10.1016/j.isci.2023.108043
Matsumura-Kawashima M, Ogata K, Moriyama M, Murakami Y, Kawado T, Nakamura S. Secreted factors from dental pulp stem cells improve Sjogren’s syndrome via regulatory T cell-mediated immunosuppression. Stem Cell Res Ther. 2021;12:182.
pubmed: 33726818 pmcid: 7962357 doi: 10.1186/s13287-021-02236-6
Yang N, Liu X, Chen X, Yu S, Yang W, Liu Y. Stem cells from exfoliated deciduous teeth transplantation ameliorates Sjogren’s syndrome by secreting soluble PD-L1. J Leukoc Biol. 2022;111:1043–55.
pubmed: 34622984 doi: 10.1002/JLB.6MA0921-752RR
Yu S, Chen X, Liu Y, Zhuang XY, Wang AC, Liu XM, et al. Exosomes derived from stem cells from the apical papilla alleviate inflammation in rat pulpitis by upregulating regulatory T cells. Int Endod J. 2022;55:517–30.
pubmed: 35274316 doi: 10.1111/iej.13721
Liu O, Xu J, Ding G, Liu D, Fan Z, Zhang C, et al. Periodontal ligament stem cells regulate B lymphocyte function via programmed cell death protein 1. Stem Cells. 2013;31:1371–82.
pubmed: 23553748 doi: 10.1002/stem.1387
Song N, Scholtemeijer M, Shah K. Mesenchymal stem cell immunomodulation: mechanisms and therapeutic potential. Trends Pharmacol Sci. 2020;41:653–64.
pubmed: 32709406 pmcid: 7751844 doi: 10.1016/j.tips.2020.06.009
Rao P, Jing J, Fan Y, Zhou C. Spatiotemporal cellular dynamics and molecular regulation of tooth root ontogeny. Int J Oral Sci. 2023;15:50.
pubmed: 38001110 pmcid: 10673972 doi: 10.1038/s41368-023-00258-9
Sui BD, Zheng CX, Zhao WM, Xuan K, Li B, Jin Y. Mesenchymal condensation in tooth development and regeneration: a focus on translational aspects of organogenesis. Physiol Rev. 2023;103:1899–964.
pubmed: 36656056 doi: 10.1152/physrev.00019.2022
Chen F, Zhang J, Zhang M, An Y, Chen F, Wu Z. A review on endogenous regenerative technology in periodontal regenerative medicine. Biomaterials. 2010;31:7892–927.
pubmed: 20684986 doi: 10.1016/j.biomaterials.2010.07.019
Howard C, Murray PE, Namerow KN. Dental pulp stem cell migration. J Endodont. 2010;36:1963–6.
doi: 10.1016/j.joen.2010.08.046
Ganesh V, Seol D, Gomez-Contreras PC, Keen HL, Shin K, Martin JA. Exosome-based cell homing and angiogenic differentiation for Dental Pulp Regeneration. Int J Mol Sci. 2022;24.
Lovelace TW, Henry MA, Hargreaves KM, Diogenes A. Evaluation of the delivery of mesenchymal stem cells into the root canal space of necrotic immature teeth after clinical regenerative endodontic procedure. J Endod. 2011;37:133–8.
pubmed: 21238791 doi: 10.1016/j.joen.2010.10.009
Hocking AM. The role of chemokines in Mesenchymal Stem Cell Homing to wounds. Adv Wound Care (New Rochelle). 2015;4:623–30.
pubmed: 26543676 doi: 10.1089/wound.2014.0579
Kim K, Lee CH, Kim BK, Mao JJ. Anatomically shaped tooth and periodontal regeneration by cell homing. J Dent Res. 2010;89:842–7.
pubmed: 20448245 pmcid: 3318060 doi: 10.1177/0022034510370803
Toksoy A, Muller V, Gillitzer R, Goebeler M. Biphasic expression of stromal cell-derived factor-1 during human wound healing. Br J Dermatol. 2007;157:1148–54.
pubmed: 17941943 doi: 10.1111/j.1365-2133.2007.08240.x
Wu N, Song J, Liu X, Ma X, Guo X, Liu T, et al. Effect of an low-energy nd: YAG laser on periodontal ligament stem cell homing through the SDF-1/CXCR4 signaling pathway. BMC Oral Health. 2023;23:501.
pubmed: 37468947 pmcid: 10357748 doi: 10.1186/s12903-023-03132-6
Liang Q, Du L, Zhang R, Kang W, Ge S. Stromal cell-derived factor-1/Exendin-4 cotherapy facilitates the proliferation, migration and osteogenic differentiation of human periodontal ligament stem cells in vitro and promotes periodontal bone regeneration in vivo. Cell Prolif. 2021;54:e12997.
pubmed: 33511708 pmcid: 7941242 doi: 10.1111/cpr.12997
Gao Y, Zhao G, Li D, Chen X, Pang J, Ke J. Isolation and multiple differentiation potential assessment of human gingival mesenchymal stem cells. Int J Mol Sci. 2014;15:20982–96.
pubmed: 25405732 pmcid: 4264207 doi: 10.3390/ijms151120982
Kotova AV, Lobov AA, Dombrovskaya JA, Sannikova VY, Ryumina NA, Klausen P et al. Comparative Analysis of Dental Pulp and Periodontal Stem cells: differences in morphology, functionality, osteogenic differentiation and proteome. Biomedicines. 2021;9.
Miteva M, Mihaylova Z, Mitev V, Aleksiev E, Stanimirov P, Praskova M et al. A review of Stem Cell attributes derived from the oral cavity. Int Dent J. 2024.
Hu L, Zhao B, Gao Z, Xu J, Fan Z, Zhang C, et al. Regeneration characteristics of different dental derived stem cell sheets. J Oral Rehabil. 2020;47(Suppl 1):66–72.
pubmed: 31211857 doi: 10.1111/joor.12839
Cha Y, Jeon M, Lee HS, Kim S, Kim SO, Lee JH, et al. Effects of in Vitro Osteogenic induction on in vivo tissue regeneration by Dental Pulp and Periodontal Ligament Stem cells. J Endod. 2015;41:1462–8.
pubmed: 26001856 doi: 10.1016/j.joen.2015.04.010
Zhao J, Zhou YH, Zhao YQ, Gao ZR, Ouyang ZY, Ye Q, et al. Oral cavity-derived stem cells and preclinical models of jaw-bone defects for bone tissue engineering. Stem Cell Res Ther. 2023;14:39.
pubmed: 36927449 pmcid: 10022059 doi: 10.1186/s13287-023-03265-z
Mendoza AH, Balzarini D, Alves T, Holzhausen M, Rovai ES. Potential of mesenchymal stem cell sheets on Periodontal Regeneration: a systematic review of Pre-clinical studies. Curr Stem Cell Res Ther. 2023;18:958–78.
pubmed: 35794765 doi: 10.2174/1574888X17666220706092520
Zhang J, Chan HF, Wang H, Shao D, Tao Y, Li M. Stem cell therapy and tissue engineering strategies using cell aggregates and decellularized scaffolds for the rescue of liver failure. J Tissue Eng. 2021;12:1542251177.
doi: 10.1177/2041731420986711
Ma Y, Ji Y, Zhong T, Wan W, Yang Q, Li A, et al. Bioprinting-based PDLSC-ECM screening for in vivo repair of alveolar bone defect using Cell-Laden, Injectable and Photocrosslinkable Hydrogels. Acs Biomater Sci Eng. 2017;3:3534–45.
pubmed: 33445388 doi: 10.1021/acsbiomaterials.7b00601
Wang W, Wang A, Hu G, Bian M, Chen L, Zhao Q, et al. Potential of an aligned porous hydrogel Scaffold Combined with Periodontal Ligament Stem cells or Gingival Mesenchymal Stem cells to promote tissue regeneration in Rat Periodontal defects. Acs Biomater Sci Eng. 2023;9:1961–75.
pubmed: 36942823 doi: 10.1021/acsbiomaterials.2c01440
Lee CH, Shah B, Moioli EK, Mao JJ. CTGF directs fibroblast differentiation from human mesenchymal stem/stromal cells and defines connective tissue healing in a rodent injury model. J Clin Invest. 2010;120:3340–9.
pubmed: 20679726 pmcid: 2929735 doi: 10.1172/JCI43230
Suh J, Lim KT, Jin H, Kim J, Choung P, Chung JH. Effects of co-culture of dental pulp stem cells and periodontal ligament stem cells on assembled dual disc scaffolds. Tissue Eng Regen Med. 2014;11:47–58.
doi: 10.1007/s13770-013-1109-6
Sanchez N, Fierravanti L, Nunez J, Vignoletti F, Gonzalez-Zamora M, Santamaria S, et al. Periodontal regeneration using a xenogeneic bone substitute seeded with autologous periodontal ligament-derived mesenchymal stem cells: a 12-month quasi-randomized controlled pilot clinical trial. J Clin Periodontol. 2020;47:1391–402.
pubmed: 32946590 doi: 10.1111/jcpe.13368
Ferrarotti F, Romano F, Gamba MN, Quirico A, Giraudi M, Audagna M, et al. Human intrabony defect regeneration with micrografts containing dental pulp stem cells: a randomized controlled clinical trial. J Clin Periodontol. 2018;45:841–50.
pubmed: 29779220 doi: 10.1111/jcpe.12931
Abdal-Wahab M, Abdel GK, Ezzatt OM, Hassan A, El AM, Gamal AY. Regenerative potential of cultured gingival fibroblasts in treatment of periodontal intrabony defects (randomized clinical and biochemical trial). J Periodontal Res. 2020;55:441–52.
pubmed: 32080858 doi: 10.1111/jre.12728
Owaki T, Shimizu T, Yamato M, Okano T. Cell sheet engineering for regenerative medicine: current challenges and strategies. Biotechnol J. 2014;9:904–14.
pubmed: 24964041 doi: 10.1002/biot.201300432
Thummarati P, Laiwattanapaisal W, Nitta R, Fukuda M, Hassametto A, Kino-Oka M. Recent advances in cell sheet Engineering: from fabrication to clinical translation. Bioeng (Basel). 2023;10.
Wei F, Qu C, Song T, Ding G, Fan Z, Liu D, et al. Vitamin C treatment promotes mesenchymal stem cell sheet formation and tissue regeneration by elevating telomerase activity. J Cell Physiol. 2012;227:3216–24.
pubmed: 22105792 pmcid: 3299914 doi: 10.1002/jcp.24012
Ding G, Liu Y, Wang W, Wei F, Liu D, Fan Z, et al. Allogeneic periodontal ligament stem cell therapy for periodontitis in swine. Stem Cells. 2010;28:1829–38.
pubmed: 20979138 doi: 10.1002/stem.512
Yang X, Ma Y, Guo W, Yang B, Tian W. Stem cells from human exfoliated deciduous teeth as an alternative cell source in bio-root regeneration. Theranostics. 2019;9:2694–711.
pubmed: 31131062 pmcid: 6525984 doi: 10.7150/thno.31801
Bai Y, Bai Y, Matsuzaka K, Hashimoto S, Fukuyama T, Wu L, et al. Cementum- and periodontal ligament-like tissue formation by dental follicle cell sheets co-cultured with Hertwig’s epithelial root sheath cells. Bone. 2011;48:1417–26.
pubmed: 21376148 doi: 10.1016/j.bone.2011.02.016
Yang H, Li J, Hu Y, Sun J, Guo W, Li H, et al. Treated dentin matrix particles combined with dental follicle cell sheet stimulate periodontal regeneration. Dent Mater. 2019;35:1238–53.
pubmed: 31201017 doi: 10.1016/j.dental.2019.05.016
Zhao YH, Zhang M, Liu NX, Lv X, Zhang J, Chen FM, et al. The combined use of cell sheet fragments of periodontal ligament stem cells and platelet-rich fibrin granules for avulsed tooth reimplantation. Biomaterials. 2013;34:5506–20.
pubmed: 23639531 doi: 10.1016/j.biomaterials.2013.03.079
Zhang H, Liu S, Zhu B, Xu Q, Ding Y, Jin Y. Composite cell sheet for periodontal regeneration: crosstalk between different types of MSCs in cell sheet facilitates complex periodontal-like tissue regeneration. Stem Cell Res Ther. 2016;7:168.
pubmed: 27842561 pmcid: 5109898 doi: 10.1186/s13287-016-0417-x
Liu J, Wang L, Liu W, Li Q, Jin Z, Jin Y. Dental follicle cells rescue the regenerative capacity of periodontal ligament stem cells in an inflammatory microenvironment. PLoS ONE. 2014;9:e108752.
pubmed: 25275580 pmcid: 4183515 doi: 10.1371/journal.pone.0108752
Panduwawala CP, Zhan X, Dissanayaka WL, Samaranayake LP, Jin L, Zhang C. In vivo periodontal tissue regeneration by periodontal ligament stem cells and endothelial cells in three-dimensional cell sheet constructs. J Periodontal Res. 2017;52:408–18.
pubmed: 27495271 doi: 10.1111/jre.12405
Park JY, Park CH, Yi T, Kim SN, Iwata T, Yun JH. rhBMP-2 pre-treated Human Periodontal ligament stem cell sheets regenerate a mineralized layer mimicking Dental Cementum. Int J Mol Sci. 2020;21.
Zhao B, Chen J, Zhao L, Deng J, Li Q. A simvastatin-releasing scaffold with periodontal ligament stem cell sheets for periodontal regeneration. J Appl Biomater Funct Mater. 2020;18:587032254.
Takizawa S, Yamamoto T, Honjo KI, Sato Y, Nakamura K, Yamamoto K, et al. Transplantation of dental pulp-derived cell sheets cultured on human amniotic membrane induced to differentiate into bone. Oral Dis. 2019;25:1352–62.
pubmed: 30912198 doi: 10.1111/odi.13096
Chen FM, Gao LN, Tian BM, Zhang XY, Zhang YJ, Dong GY, et al. Treatment of periodontal intrabony defects using autologous periodontal ligament stem cells: a randomized clinical trial. Stem Cell Res Ther. 2016;7:33.
pubmed: 26895633 pmcid: 4761216 doi: 10.1186/s13287-016-0288-1
Liu J, Ruan J, Weir MD, Ren K, Schneider A, Wang P et al. Periodontal Bone-Ligament-Cementum Regeneration via scaffolds and Stem cells. Cells-Basel. 2019;8.
Ahrens CC, Dong Z, Li W. Engineering cell aggregates through incorporated polymeric microparticles. Acta Biomater. 2017;62:64–81.
pubmed: 28782721 doi: 10.1016/j.actbio.2017.08.003
Guo W, He Y, Tang X, Chen G, Shi H, Gong K, et al. Scaffold-free cell pellet transplantations can be applied to periodontal regeneration. Cell Transpl. 2014;23:181–94.
doi: 10.3727/096368912X662426
Meng H, Hu L, Zhou Y, Ge Z, Wang H, Wu CT, et al. A sandwich structure of Human Dental Pulp Stem cell sheet, treated dentin matrix, and Matrigel for tooth Root Regeneration. Stem Cells Dev. 2020;29:521–32.
pubmed: 32089088 doi: 10.1089/scd.2019.0162
Feng G, Wu Y, Yu Y, Huang L, An S, Hu B, et al. Periodontal ligament-like tissue regeneration with drilled porous decalcified dentin matrix sheet composite. Oral Dis. 2018;24:429–41.
pubmed: 28815884 doi: 10.1111/odi.12734
Yang Z, Jin F, Zhang X, Ma D, Han C, Huo N, et al. Tissue engineering of cementum/periodontal-ligament complex using a novel three-dimensional pellet cultivation system for human periodontal ligament stem cells. Tissue Eng Part C Methods. 2009;15:571–81.
pubmed: 19534606 doi: 10.1089/ten.tec.2008.0561
Zhu B, Liu W, Zhang H, Zhao X, Duan Y, Li D, et al. Tissue-specific composite cell aggregates drive periodontium tissue regeneration by reconstructing a regenerative microenvironment. J Tissue Eng Regen Med. 2017;11:1792–805.
pubmed: 26455905 doi: 10.1002/term.2077
Mulimani P, Mazzawi NA, Goldstein AJ, Obenaus AM, Baggett SM, Truong D, et al. Engineered 3D Periodontal Ligament Model with magnetic Tensile Loading. J Dent Res. 2024;103:1008–16.
pubmed: 39185630 doi: 10.1177/00220345241264792
Zheng CX, Sui BD, Hu CH, Qiu XY, Zhao P, Jin Y. Reconstruction of structure and function in tissue engineering of solid organs: toward simulation of natural development based on decellularization. J Tissue Eng Regen Med. 2018;12:1432–47.
pubmed: 29701314 doi: 10.1002/term.2676
Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies. Science. 2014;345:1247125.
pubmed: 25035496 doi: 10.1126/science.1247125
Tamaki N, Cristina OR, Inagaki Y, Fukui M, Nagata T, Ito HO. Resveratrol improves oxidative stress and prevents the progression of periodontitis via the activation of the Sirt1/AMPK and the Nrf2/antioxidant defense pathways in a rat periodontitis model. Free Radic Biol Med. 2014;75:222–9.
pubmed: 25091897 doi: 10.1016/j.freeradbiomed.2014.07.034
Daghrery A, Ferreira JA, de Souza AI, Clarkson BH, Eckert GJ, Bhaduri SB, et al. A highly ordered, Nanostructured Fluorinated CaP-Coated Melt Electrowritten Scaffold for Periodontal tissue regeneration. Adv Healthc Mater. 2021;10:e2101152.
pubmed: 34342173 pmcid: 8568633 doi: 10.1002/adhm.202101152
Shimizu Y, Takeda-Kawaguchi T, Kuroda I, Hotta Y, Kawasaki H, Hariyama T, et al. Exosomes from dental pulp cells attenuate bone loss in mouse experimental periodontitis. J Periodontal Res. 2022;57:162–72.
pubmed: 34826339 doi: 10.1111/jre.12949
Chew J, Chuah SJ, Teo K, Zhang S, Lai RC, Fu JH, et al. Mesenchymal stem cell exosomes enhance periodontal ligament cell functions and promote periodontal regeneration. Acta Biomater. 2019;89:252–64.
pubmed: 30878447 doi: 10.1016/j.actbio.2019.03.021
Liu Y, Zhuang X, Yu S, Yang N, Zeng J, Liu X, et al. Exosomes derived from stem cells from apical papilla promote craniofacial soft tissue regeneration by enhancing Cdc42-mediated vascularization. Stem Cell Res Ther. 2021;12:76.
pubmed: 33482924 pmcid: 7821694 doi: 10.1186/s13287-021-02151-w
Sakaguchi K, Katagiri W, Osugi M, Kawai T, Sugimura-Wakayama Y, Hibi H. Periodontal tissue regeneration using the cytokine cocktail mimicking secretomes in the conditioned media from human mesenchymal stem cells. Biochem Biophys Res Commun. 2017;484:100–6.
pubmed: 28104393 doi: 10.1016/j.bbrc.2017.01.065
Mitsiadis TA, Smith MM. How do genes make teeth to order through development? J Exp Zool B Mol Dev Evol. 2006;306:177–82.
pubmed: 16615103 doi: 10.1002/jez.b.21104
Matsumoto K, Nakamura T. Hepatocyte growth factor (HGF) as a tissue organizer for organogenesis and regeneration. Biochem Biophys Res Commun. 1997;239:639–44.
pubmed: 9367820 doi: 10.1006/bbrc.1997.7517
Cao Y, Liu Z, Xie Y, Hu J, Wang H, Fan Z, et al. Adenovirus-mediated transfer of hepatocyte growth factor gene to human dental pulp stem cells under good manufacturing practice improves their potential for periodontal regeneration in swine. Stem Cell Res Ther. 2015;6:249.
pubmed: 26670567 pmcid: 4681125 doi: 10.1186/s13287-015-0244-5
Li G, Han N, Yang H, Zhang X, Cao Y, Cao Y, et al. SFRP2 promotes stem cells from apical papilla-mediated periodontal tissue regeneration in miniature pig. J Oral Rehabil. 2020;47(Suppl 1):12–8.
pubmed: 31469431 doi: 10.1111/joor.12882
Jin L, Cao Y, Yu G, Wang J, Lin X, Ge L, et al. SFRP2 enhances the osteogenic differentiation of apical papilla stem cells by antagonizing the canonical WNT pathway. Cell Mol Biol Lett. 2017;22:14.
pubmed: 28794794 pmcid: 5547503 doi: 10.1186/s11658-017-0044-2
Lin X, Dong R, Diao S, Yu G, Wang L, Li J, et al. SFRP2 enhanced the adipogenic and neuronal differentiation potentials of stem cells from apical papilla. Cell Biol Int. 2017;41:534–43.
pubmed: 28244619 doi: 10.1002/cbin.10757
Yu G, Wang J, Lin X, Diao S, Cao Y, Dong R, et al. Demethylation of SFRP2 by histone demethylase KDM2A regulated osteo-/dentinogenic differentiation of stem cells of the apical papilla. Cell Prolif. 2016;49:330–40.
pubmed: 27074224 pmcid: 6496193 doi: 10.1111/cpr.12256
Chen YL, Chen PK, Jeng LB, Huang CS, Yang LC, Chung HY, et al. Periodontal regeneration using ex vivo autologous stem cells engineered to express the BMP-2 gene: an alternative to alveolaplasty. Gene Ther. 2008;15:1469–77.
pubmed: 18701911 doi: 10.1038/gt.2008.131
Jin QM, Anusaksathien O, Webb SA, Rutherford RB, Giannobile WV. Gene therapy of bone morphogenetic protein for periodontal tissue engineering. J Periodontol. 2003;74:202–13.
pubmed: 12666709 pmcid: 2680435 doi: 10.1902/jop.2003.74.2.202
Elangovan S, Karimbux N. Review paper: DNA delivery strategies to promote periodontal regeneration. J Biomater Appl. 2010;25:3–18.
pubmed: 20511387 doi: 10.1177/0885328210366490
Kaigler D, Cirelli JA, Giannobile WV. Growth factor delivery for oral and periodontal tissue engineering. Expert Opin Drug Deliv. 2006;3:647–62.
pubmed: 16948560 pmcid: 2573469 doi: 10.1517/17425247.3.5.647
Zhang C, Guo H, Yang C, Chen Q, Huang J, Liu L, et al. The biological behavior optimization of human periodontal ligament stem cells via preconditioning by the combined application of fibroblast growth factor-2 and A83-01 in in vitro culture expansion. J Transl Med. 2019;17:66.
pubmed: 30819199 pmcid: 6396448 doi: 10.1186/s12967-019-1799-1
Yu Y, Mu J, Fan Z, Lei G, Yan M, Wang S, et al. Insulin-like growth factor 1 enhances the proliferation and osteogenic differentiation of human periodontal ligament stem cells via ERK and JNK MAPK pathways. Histochem Cell Biol. 2012;137:513–25.
pubmed: 22227802 doi: 10.1007/s00418-011-0908-x
Jaukovic A, Kukolj T, Trivanovic D, Okic-Dordevic I, Obradovic H, Miletic M, et al. Modulating stemness of mesenchymal stem cells from exfoliated deciduous and permanent teeth by IL-17 and bFGF. J Cell Physiol. 2021;236:7322–41.
pubmed: 33934350 doi: 10.1002/jcp.30399
Wang L, Zhao Y, Liu Y, Akiyama K, Chen C, Qu C, et al. IFN-gamma and TNF-alpha synergistically induce mesenchymal stem cell impairment and tumorigenesis via NFkappaB signaling. Stem Cells. 2013;31:1383–95.
pubmed: 23553791 doi: 10.1002/stem.1388
Ogawa K, Miyaji H, Kato A, Kosen Y, Momose T, Yoshida T, et al. Periodontal tissue engineering by nano beta-tricalcium phosphate scaffold and fibroblast growth factor-2 in one-wall infrabony defects of dogs. J Periodontal Res. 2016;51:758–67.
pubmed: 27870141 doi: 10.1111/jre.12352
Chen FM, Jin Y. Periodontal tissue engineering and regeneration: current approaches and expanding opportunities. Tissue Eng Part B Rev. 2010;16:219–55.
pubmed: 19860551 doi: 10.1089/ten.teb.2009.0562
Li B, Sun J, Dong Z, Xue P, He X, Liao L, et al. GCN5 modulates osteogenic differentiation of periodontal ligament stem cells through DKK1 acetylation in inflammatory microenvironment. Sci Rep. 2016;6:26542.
pubmed: 27216891 pmcid: 4877597 doi: 10.1038/srep26542
Zhang G, Zhang M, Feng Q, Wang R, Mei H, Xing K, et al. Supramolecular Composite Hydrogel loaded with CaF(2) nanoparticles promotes the recovery of Periodontitis Bone Resorption. Acs Appl Mater Interfaces. 2024;16:45929–47.
pubmed: 39183483 doi: 10.1021/acsami.4c07210
Mayo V, Sawatari Y, Huang CY, Garcia-Godoy F. Neural crest-derived dental stem cells–where we are and where we are going. J Dent. 2014;42:1043–51.
pubmed: 24769107 doi: 10.1016/j.jdent.2014.04.007
Cai X, Yang F, Walboomers XF, Wang Y, van den Jansen JA, et al. Periodontal regeneration via chemoattractive constructs. J Clin Periodontol. 2018;45:851–60.
pubmed: 29779212 pmcid: 6055718 doi: 10.1111/jcpe.12928
Yardley N, Garcia-Castro MI. FGF signaling transforms non-neural ectoderm into neural crest. Dev Biol. 2012;372:166–77.
pubmed: 23000357 pmcid: 3541687 doi: 10.1016/j.ydbio.2012.09.006
Fayazi S, Takimoto K, Diogenes A. Comparative Evaluation of Chemotactic Factor Effect on Migration and differentiation of stem cells of the apical papilla. J Endod. 2017;43:1288–93.
pubmed: 28578888 doi: 10.1016/j.joen.2017.03.012
Murakami S, Takayama S, Kitamura M, Shimabukuro Y, Yanagi K, Ikezawa K, et al. Recombinant human basic fibroblast growth factor (bFGF) stimulates periodontal regeneration in class II furcation defects created in beagle dogs. J Periodontal Res. 2003;38:97–103.
pubmed: 12558943 doi: 10.1034/j.1600-0765.2003.00640.x
Ding T, Li J, Zhang X, Du L, Li Y, Li D, et al. Super-assembled core/shell fibrous frameworks with dual growth factors for in situ cementum-ligament-bone complex regeneration. Biomater Sci. 2020;8:2459–71.
pubmed: 32191780 doi: 10.1039/D0BM00102C
Li F, Yu F, Xu X, Li C, Huang D, Zhou X, et al. Evaluation of recombinant human FGF-2 and PDGF-BB in Periodontal Regeneration: a systematic review and Meta-analysis. Sci Rep. 2017;7:65.
pubmed: 28246406 pmcid: 5427916 doi: 10.1038/s41598-017-00113-y
Tan J, Zhang M, Hai Z, Wu C, Lin J, Kuang W, et al. Sustained release of two bioactive factors from Supramolecular Hydrogel promotes Periodontal Bone Regeneration. ACS Nano. 2019;13:5616–22.
pubmed: 31059238 doi: 10.1021/acsnano.9b00788
Ji B, Sheng L, Chen G, Guo S, Xie L, Yang B, et al. The combination use of platelet-rich fibrin and treated dentin matrix for tooth root regeneration by cell homing. Tissue Eng Part A. 2015;21:26–34.
pubmed: 25111570 doi: 10.1089/ten.tea.2014.0043

Auteurs

Shuyi Wen (S)

Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China.

Xiao Zheng (X)

Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China.

Wuwei Yin (W)

Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China.

Yushan Liu (Y)

Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China.

Ruijie Wang (R)

Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China.

Yaqi Zhao (Y)

Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China.

Ziyi Liu (Z)

Department of Stomatology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong, 528308, China.

Cong Li (C)

Dongguan Key Laboratory of Metabolic Immunology and Oral Diseases, Dongguan Maternal and Child Health Care Hospital, Dongguan, Guangdong, 523000, China.

Jincheng Zeng (J)

Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, 523808, China. zengjc@gdmu.edu.cn.

Mingdeng Rong (M)

Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China. rmdeng@smu.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH