Variance investigation on the microstructural characteristics of vessels among three lignocellulosic biomasses.
Lignocellulosic materials
Morphological characterization
Pit structure
Resin casting
Stereoscopic vessel
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
31 Oct 2024
31 Oct 2024
Historique:
received:
02
01
2024
accepted:
10
09
2024
medline:
1
11
2024
pubmed:
1
11
2024
entrez:
1
11
2024
Statut:
epublish
Résumé
Especially, the processing and utilization of biomass-based material is closely related to the vessel, e.g. the flow of vapour and additive. It is conventional that vessels in most plants can influence on water and nutrients transport between adjacent cells, which could just infer to be important in the wood-based panel industries. In this work, a complete characterization of vessels and pits is presented for three conventional biomasses in wood-based panel: poplar (Populus deltoides) (P), moso bamboo (Phyllostachys edulis) (B), and the fruit shell of oil camellia (Camellia Oleifera) (FS_OC). Every material is analyzed by combining several techniques including: light microscopy, scanning electron microscopy and surveying calculations from resin casting. The results show that among the three biomass materials, B has a significantly larger vessel width (164.8 ± 6.0 μm for B, 2.2 ± 6.2 μm for P, 10.0 ± 0.8 μm for FS_OC) and smaller inclination angle of the perforation plates (6.8° for B, 44.7° for P), which is more conductive to improving moisture transfer between the vessels. The vessel length of P varies widely from 676.8 μm to 1025.2 μm, which is related to its seasonal growth. By resin casting analysis, more differences in the morphology and distribution of pits in the vessel walls were observed between the three species. Such as, For B, there are numerous pits between vessel cells, while very few to none between vessel and parenchyma cells or fiber. In addition to pits, B and FS_OC also have spiral thickening structures on their vessel walls. The pit membrane is an elliptical shape in P, while slit-like shape in FS_OC and a combination of both elliptical and slit-like shape in bamboo. The unique microstructural characteristics of vessels is related to the individual plant growth traits, which is the basis for biomass-based material processing and utilization.
Identifiants
pubmed: 39482326
doi: 10.1038/s41598-024-72741-0
pii: 10.1038/s41598-024-72741-0
doi:
Substances chimiques
lignocellulose
11132-73-3
Lignin
9005-53-2
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
26207Subventions
Organisme : National Natural Science Foundation of China
ID : 32271791
Organisme : National Natural Science Foundation of China
ID : 32171709
Organisme : Forestry science and technology innovation of Hunan Province in China
ID : XLK202107-3
Informations de copyright
© 2024. The Author(s).
Références
Wheeler, E. A. & Lapasha, C. A. Resin canals in Pinus Taeda: longitudinal canal lengths and interconnections between longitudinal and radial canals. IAWA J. 11, 227–238. https://doi.org/10.1163/22941932-90001180 (1990).
doi: 10.1163/22941932-90001180
Holbrook, N. M. & Zwieniecki, M. A. Integration of long distance transport systems in plants: perspectives and prospects for future research. In Vascular Transport in Plants. 537–545 (Academic Press, 2005).
Ewers, F. W. & Fisher, J. B. Variation in vessel length and diameter in stems of six tropical and subtropical lianas. Am. J. Bot. 76, 1452–1459. https://doi.org/10.1002/j.1537-2197.1989.tb15126.x (1989).
doi: 10.1002/j.1537-2197.1989.tb15126.x
Xu, T. Y., Zhi, S. T., Su, Y. R., Li, Z. L. & Zheng, E. N. Water transport characteristics of multiple structures of xylem vessels in Magnolia. Forests 13, 1617. https://doi.org/10.3390/f13101617 (2022).
doi: 10.3390/f13101617
Choat, B., Cobb, A. R. & Jansen, S. Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function. New Phytol. 177, 608–626. https://doi.org/10.1111/j.1469-8137.2007.02317.x (2008).
doi: 10.1111/j.1469-8137.2007.02317.x
pubmed: 18086228
Li, Z., Zhao, B. & Zhu, Z. Species and distribution of mountain bamboos in Shennongjia, Central China. J. Forestry Res. 14, 35–38. https://doi.org/10.1007/bf02856759 (2003).
doi: 10.1007/bf02856759
Chen, H. et al. A comparative study of the microstructure and water permeability between flattened bamboo and bamboo culm. J. Wood Sci. 65, 64. https://doi.org/10.1186/s10086-019-1842-0 (2019).
doi: 10.1186/s10086-019-1842-0
Wang, Q., Chang, S. S., Tan, Y. J. & Hu, J. B. Mesopore structure in Camellia Oleifera shell. Protoplasma. 256, 1145–1151. https://doi.org/10.1007/s00709-019-01371-5 (2019).
doi: 10.1007/s00709-019-01371-5
pubmed: 30953174
Ahmed, S. A. & Chun, S. K. Permeability of Tectona grandis L. as affected by wood structure. Wood Sci. Technol. 45, 487–500. https://doi.org/10.1007/s00226-010-0335-5 (2011).
doi: 10.1007/s00226-010-0335-5
Huang, P. X., Latif, E., Chang, W. S., Ansell, M. P. & Lawrence, M. Water vapour diffusion resistance factor of Phyllostachys edulis (Moso bamboo). Constr. Build. Mater. 141, 216–221. https://doi.org/10.1016/j.conbuildmat.2017.02.156 (2017).
doi: 10.1016/j.conbuildmat.2017.02.156
Mauseth, J. D. & Fujii, T. Resin-casting: a method for investigating apoplastic spaces. Am. J. Bot. 81, 104–110. https://doi.org/10.2307/2445569 (1994).
doi: 10.2307/2445569
Murakam, T. Application of the scanning electron microscope to the study of the fine distribution of the blood vessels. Arch. Histologicum Japonicum 32, 445–454. https://doi.org/10.1679/aohc1950.32.445 (1971).
doi: 10.1679/aohc1950.32.445
Walocha, J. A., Litwin, J. A., Bereza, T., Klimek-Piotrowska, W. & Miodonski, A. J. Vascular architecture of human uterine cervix visualized by corrosion casting and scanning electron microscopy. Hum. Reprod. 27, 727–732. https://doi.org/10.1093/humrep/der458 (2012).
doi: 10.1093/humrep/der458
pubmed: 22252085
Zagorska-Swiezy, K., Litwin, J. A., Gorczyca, J., Pitynski, K. & Miodonski, A. J. Arterial supply and venous drainage of the choroid plexus of the human lateral ventricle in the prenatal period as revealed by vascular corrosion casts and SEM. Folia Morphol. (Praha) 67, 209–213 (2008).
Sangiorgi, S. et al. The microvasculature of the lateral choroid plexus in the rat: a scanning electron microscopy study of vascular corrosion casts. Eur. J. Morphol. 41, 155–160 (2003).
pubmed: 16229157
Saiki, H., Goto, T. & Sakuno, T. Scanning electron microscopy of glue lines separated from plywood. J. Jpn. Wood Res. Soc. (1975).
Liu, R. et al. Precise microcasting revealing the connectivity of bamboo pore network. Ind. Crop Prod. 170, 113787. https://doi.org/10.1016/j.indcrop.2021.113787 (2021).
doi: 10.1016/j.indcrop.2021.113787
Xu, T. Y., Zhang, L. X. & Li, Z. Computational fluid dynamics model and flow resistance characteristics of Jatropha curcas L xylem vessel. Sci. Rep. 10, 14728. https://doi.org/10.1038/s41598-020-71576-9 (2020).
doi: 10.1038/s41598-020-71576-9
pubmed: 32895403
pmcid: 7477118
Pratt, R. B. & Jacobsen, A. L. Conflicting demands on angiosperm xylem: tradeoffs among storage, transport and biomechanics. Plant. Cell. Environ. 40, 897–913. https://doi.org/10.1111/pce.12862 (2017).
doi: 10.1111/pce.12862
pubmed: 27861981
Endo, S., Iwai, Y. & Fukuda, H. Cargo-dependent and cell wall-associated xylem transport in Arabidopsis. New Phytol. 222, 159–170. https://doi.org/10.1111/nph.15540 (2019).
doi: 10.1111/nph.15540
pubmed: 30317651
Chukhchin, D. G., Vashukova, K. & Novozhilov, E. Bordered pit formation in cell walls of spruce tracheids. Plants (Basel) 10, 1968. https://doi.org/10.3390/plants10091968 (2021).
doi: 10.3390/plants10091968
pubmed: 34579500
Fernández, M. E. et al. New insights into wood anatomy and function relationships: how Eucalyptus challenges what we already know. Ecol. Manag. 454, 117638. https://doi.org/10.1016/j.foreco.2019.117638 (2019).
doi: 10.1016/j.foreco.2019.117638
Luo, J. J. et al. Comparison of metaxylem vessels and pits in four sympodial bamboo species. Sci. Rep. 9, 10876. https://doi.org/10.1038/s41598-019-47419-7 (2019).
doi: 10.1038/s41598-019-47419-7
pubmed: 31350522
pmcid: 6659680
Franklin, G. L. Preparation of thin sections of synthetic resins and wood-resin composites, and a new macerating method for wood. Nature 155, 51. https://doi.org/10.1038/155051a0 (1945).
doi: 10.1038/155051a0
Hietz, P., Rosner, S., Hietz-Seifert, U. & Wright, S. J. Wood traits related to size and life history of trees in a Panamanian rainforest. New Phytol. 213, 170–180. https://doi.org/10.1111/nph.14123 (2017).
doi: 10.1111/nph.14123
pubmed: 27533709
Grosser, D. & Liese, W. On the anatomy of Asian bamboos, with special reference to their vascular bundles. Wood Sci. Technol. 5, 290–312. https://doi.org/10.1007/bf00365061 (1971).
doi: 10.1007/bf00365061
Helmling, S., Olbrich, A., Heinz, I. & Koch, G. Atlas of vessel elements identification of Asian timbers. IAWA J. 39, 249–352. https://doi.org/10.1163/22941932-20180202 (2018).
doi: 10.1163/22941932-20180202
Jangid, P. P. & Gupta, S. Comparative wood anatomy of Indian Drypetes and Putranjiva (Putranjivaceae): systematic implications, identification and comments on the synonymy of D-sumatrana. Nord J. Bot. 33, 684–695. https://doi.org/10.1111/njb.00850 (2015).
doi: 10.1111/njb.00850
Zhang, S. Q. et al. Intercellular pathways in internodal metaxylem vessels of moso bamboo Phyllostachys edulis. IAWA J. 40, 871–883. https://doi.org/10.1163/22941932-40190237 (2019).
doi: 10.1163/22941932-40190237
Ewers, F. W. & Carlquist, S. Comparative wood anatomy: systematic, ecological, and evolutionary aspects of dicotyledon wood. Taxonomy 39, 67. https://doi.org/10.2307/1223183 (2001).
doi: 10.2307/1223183
Liu, R., Yang, S., Li, H., Zhai, Z. & Fei, B. Characteristics of pits in the vessel element of moso bamboo (Phyllostachys edulis (Carr.) J.Houz). J. Nanjing Forestry Univ. (Natural Sci. Edn.) 41, 163–168 (2017).