H
Animals
Anti-Bacterial Agents
/ pharmacology
Hydrogen Sulfide
/ metabolism
Mice
Pseudomonas aeruginosa
/ drug effects
Female
Biofilms
/ drug effects
Pseudomonas Infections
/ drug therapy
Humans
Gentamicins
/ pharmacology
Macrophages
/ drug effects
Bacteria
/ drug effects
RAW 264.7 Cells
Microbial Sensitivity Tests
Disease Models, Animal
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
31 Oct 2024
31 Oct 2024
Historique:
received:
12
06
2024
accepted:
18
10
2024
medline:
1
11
2024
pubmed:
1
11
2024
entrez:
1
11
2024
Statut:
epublish
Résumé
Bacteria-derived H
Identifiants
pubmed: 39482291
doi: 10.1038/s41467-024-53764-7
pii: 10.1038/s41467-024-53764-7
doi:
Substances chimiques
Anti-Bacterial Agents
0
Hydrogen Sulfide
YY9FVM7NSN
Gentamicins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
9422Subventions
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 22277087, 32070439, U2106227, 82022066
Informations de copyright
© 2024. The Author(s).
Références
Murray, C. J. L. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).
doi: 10.1016/S0140-6736(21)02724-0
Brown, E. D. & Wright, G. D. Antibacterial drug discovery in the resistance era. Nature 529, 336–343 (2016).
pubmed: 26791724
doi: 10.1038/nature17042
Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O. & Piddock, L. J. V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42–51 (2015).
pubmed: 25435309
doi: 10.1038/nrmicro3380
Mitcheltree, M. J. et al. A synthetic antibiotic class overcoming bacterial multidrug resistance. Nature 599, 507–512 (2021).
pubmed: 34707295
pmcid: 8549432
doi: 10.1038/s41586-021-04045-6
Durand-Reville, T. F. et al. Rational design of a new antibiotic class for drug-resistant infections. Nature 597, 698–702 (2021).
pubmed: 34526714
doi: 10.1038/s41586-021-03899-0
Imai, Y. et al. A new antibiotic selectively kills Gram-negative pathogens. Nature 576, 459–464 (2019).
pubmed: 31747680
pmcid: 7188312
doi: 10.1038/s41586-019-1791-1
Smith, P. A. et al. Optimized arylomycins are a new class of Gram-negative antibiotics. Nature 561, 189–194 (2018).
pubmed: 30209367
doi: 10.1038/s41586-018-0483-6
Durand-Réville, T. F. et al. ETX2514 is a broad-spectrum β-lactamase inhibitor for the treatment of drug-resistant Gram-negative bacteria including Acinetobacter baumannii. Nat. Microbiol. 2, 17104 (2017).
pubmed: 28665414
doi: 10.1038/nmicrobiol.2017.104
Wang, Z. et al. A naturally inspired antibiotic to target multidrug-resistant pathogens. Nature 601, 606–611 (2022).
pubmed: 34987225
pmcid: 10321319
doi: 10.1038/s41586-021-04264-x
Li, Q. et al. Synthetic group A streptogramin antibiotics that overcome Vat resistance. Nature 586, 145–150 (2020).
pubmed: 32968273
pmcid: 7546582
doi: 10.1038/s41586-020-2761-3
Stokes, J. M. et al. Pentamidine sensitizes Gram-negative pathogens to antibiotics and overcomes acquired colistin resistance. Nat. Microbiol. 2, 17028 (2017).
pubmed: 28263303
pmcid: 5360458
doi: 10.1038/nmicrobiol.2017.28
King, A. M. et al. Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature 510, 503–506 (2014).
pubmed: 24965651
pmcid: 4981499
doi: 10.1038/nature13445
Song, M. et al. A broad-spectrum antibiotic adjuvant reverses multidrug-resistant Gram-negative pathogens. Nat. Microbiol. 5, 1040–1050 (2020).
pubmed: 32424338
doi: 10.1038/s41564-020-0723-z
Yu, B. et al. Restoring and enhancing the potency of existing antibiotics against drug-resistant gram-negative bacteria through the development of potent small-molecule adjuvants. ACS Infect. Dis. 8, 1491–1508 (2022).
pubmed: 35801980
pmcid: 11227883
doi: 10.1021/acsinfecdis.2c00121
Douafer, H., Andrieu, V., Phanstiel, O. & Brunel, J. M. Antibiotic adjuvants: Make antibiotics great again! J. Med. Chem. 62, 8665–8681 (2019).
pubmed: 31063379
doi: 10.1021/acs.jmedchem.8b01781
Zhu, Y. et al. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections. Med. Res. Rev. 42, 1377–1422 (2022).
pubmed: 34984699
doi: 10.1002/med.21879
Parker, E. N. et al. An iterative approach guides discovery of the FabI inhibitor fabimycin, a late-stage antibiotic candidate with in vivo efficacy against drug-resistant gram-negative infections. ACS Cent. Sci. 8, 1145–1158 (2022).
pubmed: 36032774
pmcid: 9413440
doi: 10.1021/acscentsci.2c00598
Parker, E. N. et al. Implementation of permeation rules leads to a FabI inhibitor with activity against Gram-negative pathogens. Nat. Microbiol. 5, 67–75 (2020).
pubmed: 31740764
doi: 10.1038/s41564-019-0604-5
Ni, N., Li, M., Wang, J. & Wang, B. Inhibitors and antagonists of bacterial quorum sensing. Med. Res. Rev. 29, 65–124 (2009).
pubmed: 18956421
doi: 10.1002/med.20145
Whiteley, M., Diggle, S. P. & Greenberg, E. P. Progress in and promise of bacterial quorum sensing research. Nature 551, 313–320 (2017).
pubmed: 29144467
pmcid: 5870893
doi: 10.1038/nature24624
Corona, F. & Martinez, J. L. Phenotypic resistance to antibiotics. Antibiotics 2, 237–255 (2013).
pubmed: 27029301
pmcid: 4790337
doi: 10.3390/antibiotics2020237
Keren, I., Kaldalu, N., Spoering, A., Wang, Y. & Lewis, K. Persister cells and tolerance to antimicrobials. FEMS Microbiol. Lett. 230, 13–18 (2004).
pubmed: 14734160
doi: 10.1016/S0378-1097(03)00856-5
Fauvart, M., De Groote, V. N. & Michiels, J. Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies. J. Med. Microbiol. 60, 699–709 (2011).
pubmed: 21459912
doi: 10.1099/jmm.0.030932-0
Levin-Reisman, I. et al. Antibiotic tolerance facilitates the evolution of resistance. Science 355, 826–830 (2017).
pubmed: 28183996
doi: 10.1126/science.aaj2191
Fridman, O., Goldberg, A., Ronin, I., Shoresh, N. & Balaban, N. Q. Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature 513, 418–421 (2014).
pubmed: 25043002
doi: 10.1038/nature13469
Schrader, S. M., Vaubourgeix, J. & Nathan, C. Biology of antimicrobial resistance and approaches to combat it. Sci. Transl. Med. 12, eaaz6992 (2020).
pubmed: 32581135
pmcid: 8177555
doi: 10.1126/scitranslmed.aaz6992
Kim, W. et al. A new class of synthetic retinoid antibiotics effective against bacterial persisters. Nature 556, 103–107 (2018).
pubmed: 29590091
pmcid: 6462414
doi: 10.1038/nature26157
Kaldalu, N. et al. In vitro studies of persister cells. Microbiol. Mol. Biol. Rev. 84, e00070–20 (2020).
pubmed: 33177189
pmcid: 7667008
doi: 10.1128/MMBR.00070-20
Hartle, M. D. & Pluth, M. D. A practical guide to working with H(2)S at the interface of chemistry and biology. Chem. Soc. Rev. 45, 6108–6117 (2016).
pubmed: 27167579
pmcid: 5099099
doi: 10.1039/C6CS00212A
Shatalin, K., Shatalina, E., Mironov, A. & Nudler, E. H2S: a universal defense against antibiotics in bacteria. Science 334, 986–990 (2011).
pubmed: 22096201
doi: 10.1126/science.1209855
Shatalin, K. et al. Inhibitors of bacterial H(2)S biogenesis targeting antibiotic resistance and tolerance. Science 372, 1169–1175 (2021).
pubmed: 34112687
pmcid: 10723041
doi: 10.1126/science.abd8377
Cao, X. et al. A review of hydrogen sulfide synthesis, metabolism, and measurement: Is modulation of hydrogen sulfide a novel therapeutic for cancer? Antioxid. Redox Signal. 31, 1–38 (2019).
pubmed: 29790379
pmcid: 6551999
doi: 10.1089/ars.2017.7058
Ma, Y. et al. CBS-derived H2S facilitates host colonization of Vibrio cholerae by promoting the iron-dependent catalase activity of KatB. PLoS Path 17, e1009763 (2021).
doi: 10.1371/journal.ppat.1009763
Yang, J. et al. Non-enzymatic hydrogen sulfide production from cysteine in blood is catalyzed by iron and vitamin B6. Commun. Biol. 2, 194 (2019).
pubmed: 31123718
pmcid: 6529520
doi: 10.1038/s42003-019-0431-5
Moest, R. R. Hydrogen sulfide determination by the methylene blue method. Anal. Chem. 47, 1204–1205 (1975).
doi: 10.1021/ac60357a008
Jiang, C. et al. NBD-based synthetic probes for sensing small molecules and proteins: design, sensing mechanisms and biological applications. Chem. Soc. Rev. 50, 7436–7495 (2021).
pubmed: 34075930
pmcid: 8763210
doi: 10.1039/D0CS01096K
Yang, C.-T. et al. Data-driven identification of hydrogen sulfide scavengers. Angew. Chem. Int. Ed. 58, 10898–10902 (2019).
doi: 10.1002/anie.201905580
Lin, V. S. & Chang, C. J. Fluorescent probes for sensing and imaging biological hydrogen sulfide. Curr. Opin. Chem. Biol. 16, 595–601 (2012).
pubmed: 22921406
pmcid: 3509267
doi: 10.1016/j.cbpa.2012.07.014
Lin, V. S., Chen, W., Xian, M. & Chang, C. J. Chemical probes for molecular imaging and detection of hydrogen sulfide and reactive sulfur species in biological systems. Chem. Soc. Rev. 44, 4596–4618 (2015).
pubmed: 25474627
pmcid: 4456340
doi: 10.1039/C4CS00298A
Peng, H. et al. A fluorescent probe for fast and quantitative detection of hydrogen sulfide in blood. Angew. Chem. Int. Ed. 50, 9672–9675 (2011).
doi: 10.1002/anie.201104236
Fiorot, R. G., de, M. & Carneiro, J. W. The mechanism for H2S scavenging by 1,3,5-hexahydrotriazines explored by DFT. Tetrahedron 76, 131112 (2020).
doi: 10.1016/j.tet.2020.131112
Henthorn, H. A. & Pluth, M. D. Mechanistic insights into the H2S-mediated reduction of aryl azides commonly used in H2S detection. J. Am. Chem. Soc. 137, 15330–15336 (2015).
pubmed: 26540330
pmcid: 4924530
doi: 10.1021/jacs.5b10675
Ismail, I. et al. Highly efficient H2S scavengers via thiolysis of positively-charged NBD amines. Chem. Sci. 11, 7823–7828 (2020).
pubmed: 34094155
pmcid: 8163142
doi: 10.1039/D0SC01518K
Xia, Y. et al. Sulfide production and oxidation by heterotrophic bacteria under aerobic conditions. ISME J. 11, 2754–2766 (2017).
pubmed: 28777380
pmcid: 5702731
doi: 10.1038/ismej.2017.125
Hammers, M. D. & Pluth, M. D. Ratiometric measurement of hydrogen sulfide and cysteine/homocysteine ratios using a dual-fluorophore fragmentation strategy. Anal. Chem. 86, 7135–7140 (2014).
pubmed: 24934901
pmcid: 4100788
doi: 10.1021/ac501680d
Montoya, L. A., Pearce, T. F., Hansen, R. J., Zakharov, L. N. & Pluth, M. D. Development of selective colorimetric probes for hydrogen sulfide based on nucleophilic aromatic substitution. J. Org. Chem. 78, 6550–6557 (2013).
pubmed: 23735055
pmcid: 3730526
doi: 10.1021/jo4008095
Mironov, A. et al. Mechanism of H(2)S-mediated protection against oxidative stress in Escherichia coli. Proc. Natl. Acad. Sci. USA 114, 6022–6027 (2017).
pubmed: 28533366
pmcid: 5468659
doi: 10.1073/pnas.1703576114
Shukla, P. et al. On demand” redox buffering by H2S contributes to antibiotic resistance revealed by a bacteria-specific H2S donor. Chem. Sci. 8, 4967–4972 (2017).
pubmed: 28959420
pmcid: 5607856
doi: 10.1039/C7SC00873B
Zheng, Y. et al. Toward hydrogen sulfide based therapeutics: Critical drug delivery and developability issues. Med. Res. Rev. 38, 57–100 (2018).
pubmed: 28240384
doi: 10.1002/med.21433
Toliver-Kinsky, T. et al. H(2)S, a Bacterial defense mechanism against the host immune response. Infect. Immun. 87, e00272–00218 (2019).
pubmed: 30323021
doi: 10.1128/IAI.00272-18
Forte, E. et al. The terminal oxidase cytochrome bd promotes sulfide-resistant bacterial respiration and growth. Sci. Rep. 6, 23788 (2016).
pubmed: 27030302
pmcid: 4815019
doi: 10.1038/srep23788
Thees, A. V. et al. PmtA regulates pyocyanin expression and biofilm formation in Pseudomonas aeruginosa. Front. Microbiol. 12, 789765 (2021).
pubmed: 34867928
pmcid: 8636135
doi: 10.3389/fmicb.2021.789765
Okshevsky, M. & Meyer, R. L. The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilms. Crit. Rev. Microbiol. 41, 341–352 (2015).
pubmed: 24303798
doi: 10.3109/1040841X.2013.841639
Ronneau, S., Hill, P. W. & Helaine, S. Antibiotic persistence and tolerance: not just one and the same. Curr. Opin. Microbiol. 64, 76–81 (2021).
pubmed: 34634678
doi: 10.1016/j.mib.2021.09.017
Dilek, N., Papapetropoulos, A., Toliver-Kinsky, T. & Szabo, C. Hydrogen sulfide: An endogenous regulator of the immune system. Pharmacol. Res. 161, 105119 (2020).
pubmed: 32781284
doi: 10.1016/j.phrs.2020.105119
Miao, L., Xin, X., Xin, H., Shen, X. & Zhu, Y. Z. Hydrogen sulfide recruits macrophage migration by integrin β1-Src-FAK/Pyk2-Rac pathway in myocardial infarction. Sci. Rep. 6, 22363 (2016).
pubmed: 26932297
pmcid: 4773762
doi: 10.1038/srep22363
Keren, I., Wu, Y., Inocencio, J., Mulcahy, L. R. & Lewis, K. Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science 339, 1213–1216 (2013).
pubmed: 23471410
doi: 10.1126/science.1232688
Szabo, C. Gasotransmitters in cancer: from pathophysiology to experimental therapy. Nat. Rev. Drug Discov. 15, 185–203 (2016).
pubmed: 26678620
doi: 10.1038/nrd.2015.1
Ono, K. et al. Cysteine hydropersulfide inactivates β-lactam antibiotics with formation of ring-opened carbothioic S-acids in bacteria. ACS Chem. Biol. 16, 731–739 (2021).
pubmed: 33781062
doi: 10.1021/acschembio.1c00027
Walsh, B. J. C. et al. The response of acinetobacter baumannii to hydrogen sulfide reveals two independent persulfide-sensing systems and a connection to biofilm regulation. mBio 11, https://doi.org/10.1128/mbio.01254-20 (2020).
Fu, L. H. et al. Hydrogen sulfide inhibits the growth of Escherichia coli through oxidative damage. J. Microbiol. 56, 238–245 (2018).
pubmed: 29492867
doi: 10.1007/s12275-018-7537-1
Ooi, X. J. & Tan, K. S. Reduced glutathione mediates resistance to H2S toxicity in oral streptococci. Appl. Environ. Microbiol. 82, 2078–2085 (2016).
pubmed: 26801579
pmcid: 4807508
doi: 10.1128/AEM.03946-15
Ng, S. Y. et al. Hydrogen sulfide sensitizes acinetobacter baumannii to killing by antibiotics. Front. Microbiol. 11, 1875 (2020).
pubmed: 32849459
pmcid: 7427342
doi: 10.3389/fmicb.2020.01875
Kasorn, A. et al. Focal adhesion kinase regulates pathogen-killing capability and life span of neutrophils via mediating both adhesion-dependent and -independent cellular signals. J. Immunol. 183, 1032–1043 (2009).
pubmed: 19561112
doi: 10.4049/jimmunol.0802984