H


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
31 Oct 2024
Historique:
received: 12 06 2024
accepted: 18 10 2024
medline: 1 11 2024
pubmed: 1 11 2024
entrez: 1 11 2024
Statut: epublish

Résumé

Bacteria-derived H

Identifiants

pubmed: 39482291
doi: 10.1038/s41467-024-53764-7
pii: 10.1038/s41467-024-53764-7
doi:

Substances chimiques

Anti-Bacterial Agents 0
Hydrogen Sulfide YY9FVM7NSN
Gentamicins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

9422

Subventions

Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 22277087, 32070439, U2106227, 82022066

Informations de copyright

© 2024. The Author(s).

Références

Murray, C. J. L. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).
doi: 10.1016/S0140-6736(21)02724-0
Brown, E. D. & Wright, G. D. Antibacterial drug discovery in the resistance era. Nature 529, 336–343 (2016).
pubmed: 26791724 doi: 10.1038/nature17042
Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O. & Piddock, L. J. V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42–51 (2015).
pubmed: 25435309 doi: 10.1038/nrmicro3380
Mitcheltree, M. J. et al. A synthetic antibiotic class overcoming bacterial multidrug resistance. Nature 599, 507–512 (2021).
pubmed: 34707295 pmcid: 8549432 doi: 10.1038/s41586-021-04045-6
Durand-Reville, T. F. et al. Rational design of a new antibiotic class for drug-resistant infections. Nature 597, 698–702 (2021).
pubmed: 34526714 doi: 10.1038/s41586-021-03899-0
Imai, Y. et al. A new antibiotic selectively kills Gram-negative pathogens. Nature 576, 459–464 (2019).
pubmed: 31747680 pmcid: 7188312 doi: 10.1038/s41586-019-1791-1
Smith, P. A. et al. Optimized arylomycins are a new class of Gram-negative antibiotics. Nature 561, 189–194 (2018).
pubmed: 30209367 doi: 10.1038/s41586-018-0483-6
Durand-Réville, T. F. et al. ETX2514 is a broad-spectrum β-lactamase inhibitor for the treatment of drug-resistant Gram-negative bacteria including Acinetobacter baumannii. Nat. Microbiol. 2, 17104 (2017).
pubmed: 28665414 doi: 10.1038/nmicrobiol.2017.104
Wang, Z. et al. A naturally inspired antibiotic to target multidrug-resistant pathogens. Nature 601, 606–611 (2022).
pubmed: 34987225 pmcid: 10321319 doi: 10.1038/s41586-021-04264-x
Li, Q. et al. Synthetic group A streptogramin antibiotics that overcome Vat resistance. Nature 586, 145–150 (2020).
pubmed: 32968273 pmcid: 7546582 doi: 10.1038/s41586-020-2761-3
Stokes, J. M. et al. Pentamidine sensitizes Gram-negative pathogens to antibiotics and overcomes acquired colistin resistance. Nat. Microbiol. 2, 17028 (2017).
pubmed: 28263303 pmcid: 5360458 doi: 10.1038/nmicrobiol.2017.28
King, A. M. et al. Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature 510, 503–506 (2014).
pubmed: 24965651 pmcid: 4981499 doi: 10.1038/nature13445
Song, M. et al. A broad-spectrum antibiotic adjuvant reverses multidrug-resistant Gram-negative pathogens. Nat. Microbiol. 5, 1040–1050 (2020).
pubmed: 32424338 doi: 10.1038/s41564-020-0723-z
Yu, B. et al. Restoring and enhancing the potency of existing antibiotics against drug-resistant gram-negative bacteria through the development of potent small-molecule adjuvants. ACS Infect. Dis. 8, 1491–1508 (2022).
pubmed: 35801980 pmcid: 11227883 doi: 10.1021/acsinfecdis.2c00121
Douafer, H., Andrieu, V., Phanstiel, O. & Brunel, J. M. Antibiotic adjuvants: Make antibiotics great again! J. Med. Chem. 62, 8665–8681 (2019).
pubmed: 31063379 doi: 10.1021/acs.jmedchem.8b01781
Zhu, Y. et al. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections. Med. Res. Rev. 42, 1377–1422 (2022).
pubmed: 34984699 doi: 10.1002/med.21879
Parker, E. N. et al. An iterative approach guides discovery of the FabI inhibitor fabimycin, a late-stage antibiotic candidate with in vivo efficacy against drug-resistant gram-negative infections. ACS Cent. Sci. 8, 1145–1158 (2022).
pubmed: 36032774 pmcid: 9413440 doi: 10.1021/acscentsci.2c00598
Parker, E. N. et al. Implementation of permeation rules leads to a FabI inhibitor with activity against Gram-negative pathogens. Nat. Microbiol. 5, 67–75 (2020).
pubmed: 31740764 doi: 10.1038/s41564-019-0604-5
Ni, N., Li, M., Wang, J. & Wang, B. Inhibitors and antagonists of bacterial quorum sensing. Med. Res. Rev. 29, 65–124 (2009).
pubmed: 18956421 doi: 10.1002/med.20145
Whiteley, M., Diggle, S. P. & Greenberg, E. P. Progress in and promise of bacterial quorum sensing research. Nature 551, 313–320 (2017).
pubmed: 29144467 pmcid: 5870893 doi: 10.1038/nature24624
Corona, F. & Martinez, J. L. Phenotypic resistance to antibiotics. Antibiotics 2, 237–255 (2013).
pubmed: 27029301 pmcid: 4790337 doi: 10.3390/antibiotics2020237
Keren, I., Kaldalu, N., Spoering, A., Wang, Y. & Lewis, K. Persister cells and tolerance to antimicrobials. FEMS Microbiol. Lett. 230, 13–18 (2004).
pubmed: 14734160 doi: 10.1016/S0378-1097(03)00856-5
Fauvart, M., De Groote, V. N. & Michiels, J. Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies. J. Med. Microbiol. 60, 699–709 (2011).
pubmed: 21459912 doi: 10.1099/jmm.0.030932-0
Levin-Reisman, I. et al. Antibiotic tolerance facilitates the evolution of resistance. Science 355, 826–830 (2017).
pubmed: 28183996 doi: 10.1126/science.aaj2191
Fridman, O., Goldberg, A., Ronin, I., Shoresh, N. & Balaban, N. Q. Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature 513, 418–421 (2014).
pubmed: 25043002 doi: 10.1038/nature13469
Schrader, S. M., Vaubourgeix, J. & Nathan, C. Biology of antimicrobial resistance and approaches to combat it. Sci. Transl. Med. 12, eaaz6992 (2020).
pubmed: 32581135 pmcid: 8177555 doi: 10.1126/scitranslmed.aaz6992
Kim, W. et al. A new class of synthetic retinoid antibiotics effective against bacterial persisters. Nature 556, 103–107 (2018).
pubmed: 29590091 pmcid: 6462414 doi: 10.1038/nature26157
Kaldalu, N. et al. In vitro studies of persister cells. Microbiol. Mol. Biol. Rev. 84, e00070–20 (2020).
pubmed: 33177189 pmcid: 7667008 doi: 10.1128/MMBR.00070-20
Hartle, M. D. & Pluth, M. D. A practical guide to working with H(2)S at the interface of chemistry and biology. Chem. Soc. Rev. 45, 6108–6117 (2016).
pubmed: 27167579 pmcid: 5099099 doi: 10.1039/C6CS00212A
Shatalin, K., Shatalina, E., Mironov, A. & Nudler, E. H2S: a universal defense against antibiotics in bacteria. Science 334, 986–990 (2011).
pubmed: 22096201 doi: 10.1126/science.1209855
Shatalin, K. et al. Inhibitors of bacterial H(2)S biogenesis targeting antibiotic resistance and tolerance. Science 372, 1169–1175 (2021).
pubmed: 34112687 pmcid: 10723041 doi: 10.1126/science.abd8377
Cao, X. et al. A review of hydrogen sulfide synthesis, metabolism, and measurement: Is modulation of hydrogen sulfide a novel therapeutic for cancer? Antioxid. Redox Signal. 31, 1–38 (2019).
pubmed: 29790379 pmcid: 6551999 doi: 10.1089/ars.2017.7058
Ma, Y. et al. CBS-derived H2S facilitates host colonization of Vibrio cholerae by promoting the iron-dependent catalase activity of KatB. PLoS Path 17, e1009763 (2021).
doi: 10.1371/journal.ppat.1009763
Yang, J. et al. Non-enzymatic hydrogen sulfide production from cysteine in blood is catalyzed by iron and vitamin B6. Commun. Biol. 2, 194 (2019).
pubmed: 31123718 pmcid: 6529520 doi: 10.1038/s42003-019-0431-5
Moest, R. R. Hydrogen sulfide determination by the methylene blue method. Anal. Chem. 47, 1204–1205 (1975).
doi: 10.1021/ac60357a008
Jiang, C. et al. NBD-based synthetic probes for sensing small molecules and proteins: design, sensing mechanisms and biological applications. Chem. Soc. Rev. 50, 7436–7495 (2021).
pubmed: 34075930 pmcid: 8763210 doi: 10.1039/D0CS01096K
Yang, C.-T. et al. Data-driven identification of hydrogen sulfide scavengers. Angew. Chem. Int. Ed. 58, 10898–10902 (2019).
doi: 10.1002/anie.201905580
Lin, V. S. & Chang, C. J. Fluorescent probes for sensing and imaging biological hydrogen sulfide. Curr. Opin. Chem. Biol. 16, 595–601 (2012).
pubmed: 22921406 pmcid: 3509267 doi: 10.1016/j.cbpa.2012.07.014
Lin, V. S., Chen, W., Xian, M. & Chang, C. J. Chemical probes for molecular imaging and detection of hydrogen sulfide and reactive sulfur species in biological systems. Chem. Soc. Rev. 44, 4596–4618 (2015).
pubmed: 25474627 pmcid: 4456340 doi: 10.1039/C4CS00298A
Peng, H. et al. A fluorescent probe for fast and quantitative detection of hydrogen sulfide in blood. Angew. Chem. Int. Ed. 50, 9672–9675 (2011).
doi: 10.1002/anie.201104236
Fiorot, R. G., de, M. & Carneiro, J. W. The mechanism for H2S scavenging by 1,3,5-hexahydrotriazines explored by DFT. Tetrahedron 76, 131112 (2020).
doi: 10.1016/j.tet.2020.131112
Henthorn, H. A. & Pluth, M. D. Mechanistic insights into the H2S-mediated reduction of aryl azides commonly used in H2S detection. J. Am. Chem. Soc. 137, 15330–15336 (2015).
pubmed: 26540330 pmcid: 4924530 doi: 10.1021/jacs.5b10675
Ismail, I. et al. Highly efficient H2S scavengers via thiolysis of positively-charged NBD amines. Chem. Sci. 11, 7823–7828 (2020).
pubmed: 34094155 pmcid: 8163142 doi: 10.1039/D0SC01518K
Xia, Y. et al. Sulfide production and oxidation by heterotrophic bacteria under aerobic conditions. ISME J. 11, 2754–2766 (2017).
pubmed: 28777380 pmcid: 5702731 doi: 10.1038/ismej.2017.125
Hammers, M. D. & Pluth, M. D. Ratiometric measurement of hydrogen sulfide and cysteine/homocysteine ratios using a dual-fluorophore fragmentation strategy. Anal. Chem. 86, 7135–7140 (2014).
pubmed: 24934901 pmcid: 4100788 doi: 10.1021/ac501680d
Montoya, L. A., Pearce, T. F., Hansen, R. J., Zakharov, L. N. & Pluth, M. D. Development of selective colorimetric probes for hydrogen sulfide based on nucleophilic aromatic substitution. J. Org. Chem. 78, 6550–6557 (2013).
pubmed: 23735055 pmcid: 3730526 doi: 10.1021/jo4008095
Mironov, A. et al. Mechanism of H(2)S-mediated protection against oxidative stress in Escherichia coli. Proc. Natl. Acad. Sci. USA 114, 6022–6027 (2017).
pubmed: 28533366 pmcid: 5468659 doi: 10.1073/pnas.1703576114
Shukla, P. et al. On demand” redox buffering by H2S contributes to antibiotic resistance revealed by a bacteria-specific H2S donor. Chem. Sci. 8, 4967–4972 (2017).
pubmed: 28959420 pmcid: 5607856 doi: 10.1039/C7SC00873B
Zheng, Y. et al. Toward hydrogen sulfide based therapeutics: Critical drug delivery and developability issues. Med. Res. Rev. 38, 57–100 (2018).
pubmed: 28240384 doi: 10.1002/med.21433
Toliver-Kinsky, T. et al. H(2)S, a Bacterial defense mechanism against the host immune response. Infect. Immun. 87, e00272–00218 (2019).
pubmed: 30323021 doi: 10.1128/IAI.00272-18
Forte, E. et al. The terminal oxidase cytochrome bd promotes sulfide-resistant bacterial respiration and growth. Sci. Rep. 6, 23788 (2016).
pubmed: 27030302 pmcid: 4815019 doi: 10.1038/srep23788
Thees, A. V. et al. PmtA regulates pyocyanin expression and biofilm formation in Pseudomonas aeruginosa. Front. Microbiol. 12, 789765 (2021).
pubmed: 34867928 pmcid: 8636135 doi: 10.3389/fmicb.2021.789765
Okshevsky, M. & Meyer, R. L. The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilms. Crit. Rev. Microbiol. 41, 341–352 (2015).
pubmed: 24303798 doi: 10.3109/1040841X.2013.841639
Ronneau, S., Hill, P. W. & Helaine, S. Antibiotic persistence and tolerance: not just one and the same. Curr. Opin. Microbiol. 64, 76–81 (2021).
pubmed: 34634678 doi: 10.1016/j.mib.2021.09.017
Dilek, N., Papapetropoulos, A., Toliver-Kinsky, T. & Szabo, C. Hydrogen sulfide: An endogenous regulator of the immune system. Pharmacol. Res. 161, 105119 (2020).
pubmed: 32781284 doi: 10.1016/j.phrs.2020.105119
Miao, L., Xin, X., Xin, H., Shen, X. & Zhu, Y. Z. Hydrogen sulfide recruits macrophage migration by integrin β1-Src-FAK/Pyk2-Rac pathway in myocardial infarction. Sci. Rep. 6, 22363 (2016).
pubmed: 26932297 pmcid: 4773762 doi: 10.1038/srep22363
Keren, I., Wu, Y., Inocencio, J., Mulcahy, L. R. & Lewis, K. Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science 339, 1213–1216 (2013).
pubmed: 23471410 doi: 10.1126/science.1232688
Szabo, C. Gasotransmitters in cancer: from pathophysiology to experimental therapy. Nat. Rev. Drug Discov. 15, 185–203 (2016).
pubmed: 26678620 doi: 10.1038/nrd.2015.1
Ono, K. et al. Cysteine hydropersulfide inactivates β-lactam antibiotics with formation of ring-opened carbothioic S-acids in bacteria. ACS Chem. Biol. 16, 731–739 (2021).
pubmed: 33781062 doi: 10.1021/acschembio.1c00027
Walsh, B. J. C. et al. The response of acinetobacter baumannii to hydrogen sulfide reveals two independent persulfide-sensing systems and a connection to biofilm regulation. mBio 11, https://doi.org/10.1128/mbio.01254-20 (2020).
Fu, L. H. et al. Hydrogen sulfide inhibits the growth of Escherichia coli through oxidative damage. J. Microbiol. 56, 238–245 (2018).
pubmed: 29492867 doi: 10.1007/s12275-018-7537-1
Ooi, X. J. & Tan, K. S. Reduced glutathione mediates resistance to H2S toxicity in oral streptococci. Appl. Environ. Microbiol. 82, 2078–2085 (2016).
pubmed: 26801579 pmcid: 4807508 doi: 10.1128/AEM.03946-15
Ng, S. Y. et al. Hydrogen sulfide sensitizes acinetobacter baumannii to killing by antibiotics. Front. Microbiol. 11, 1875 (2020).
pubmed: 32849459 pmcid: 7427342 doi: 10.3389/fmicb.2020.01875
Kasorn, A. et al. Focal adhesion kinase regulates pathogen-killing capability and life span of neutrophils via mediating both adhesion-dependent and -independent cellular signals. J. Immunol. 183, 1032–1043 (2009).
pubmed: 19561112 doi: 10.4049/jimmunol.0802984

Auteurs

Jiekai Sun (J)

Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China.

Xu Wang (X)

Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China.

Ye Gao (Y)

Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China.

Shuangyu Li (S)

Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China.

Ziwei Hu (Z)

Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China.

Yan Huang (Y)

Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China.

Baoqiang Fan (B)

State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China.

Xia Wang (X)

Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China.

Miao Liu (M)

Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China.

Chunhua Qiao (C)

Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China.

Wei Zhang (W)

State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China. zhang_wei@sdu.edu.cn.

Yipeng Wang (Y)

Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China. yipengwang@suda.edu.cn.
Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China. yipengwang@suda.edu.cn.

Xingyue Ji (X)

Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China. jixy@suda.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH