Prenatal metal exposures and kidney function in adolescence in Project Viva.


Journal

Environmental health : a global access science source
ISSN: 1476-069X
Titre abrégé: Environ Health
Pays: England
ID NLM: 101147645

Informations de publication

Date de publication:
30 Oct 2024
Historique:
received: 29 06 2024
accepted: 18 10 2024
medline: 31 10 2024
pubmed: 31 10 2024
entrez: 31 10 2024
Statut: epublish

Résumé

The developing kidney is vulnerable to prenatal environmental factors such as metal exposure, potentially altering the risk of later-life kidney dysfunction. This study examines the relationship between prenatal metal exposures, individually and as mixtures, and adolescent kidney function in Project Viva, a prospective longitudinal birth cohort in Massachusetts, USA. We used data on metals measured in blood during pregnancy including 15 in the first trimester and four in the second trimester. We calculated estimated glomerular filtration rate (eGFR) in adolescents (mean: 17.7 years) using cystatin C- (eGFRcys) and creatinine-based (eGFRcreat) equations for children. We used linear regression for single metal analyses, and Bayesian kernel machine regression and quantile-based g-computation for mixture analyses, adjusting for relevant covariates. To account for multiple comparisons in the single metal analyses, we applied the Holm-Bonferroni procedure to control the false discovery rate. This study included 371 participants with first trimester metals and adolescent eGFR, and 256 with second trimester metals. Each doubling in first trimester cadmium concentration was associated with lower adolescent eGFRcys (β:-1.51; 95% CI:-2.83, -0.18). Each doubling in first trimester chromium (β:-1.45; 95% CI:-2.71, -0.19), nickel (β:-1.91; 95% CI:-3.65, -0.16), and vanadium (β:-1.69; 95% CI:-3.21, -0.17) was associated with lower adolescent eGFRcreat. After adjusting for multiple comparisons, p-values for associations between adolescent eGFR and chromium, nickel, vanadium and cadmium did not meet the criteria for significance. Metal mixture analyses did not identify statistically significant associations with adolescent eGFR. These findings have important implications for future studies investigating the potential mechanisms through which prenatal metal exposures affect long-term kidney health in children.

Sections du résumé

BACKGROUND BACKGROUND
The developing kidney is vulnerable to prenatal environmental factors such as metal exposure, potentially altering the risk of later-life kidney dysfunction. This study examines the relationship between prenatal metal exposures, individually and as mixtures, and adolescent kidney function in Project Viva, a prospective longitudinal birth cohort in Massachusetts, USA.
METHODS METHODS
We used data on metals measured in blood during pregnancy including 15 in the first trimester and four in the second trimester. We calculated estimated glomerular filtration rate (eGFR) in adolescents (mean: 17.7 years) using cystatin C- (eGFRcys) and creatinine-based (eGFRcreat) equations for children. We used linear regression for single metal analyses, and Bayesian kernel machine regression and quantile-based g-computation for mixture analyses, adjusting for relevant covariates. To account for multiple comparisons in the single metal analyses, we applied the Holm-Bonferroni procedure to control the false discovery rate.
RESULTS RESULTS
This study included 371 participants with first trimester metals and adolescent eGFR, and 256 with second trimester metals. Each doubling in first trimester cadmium concentration was associated with lower adolescent eGFRcys (β:-1.51; 95% CI:-2.83, -0.18). Each doubling in first trimester chromium (β:-1.45; 95% CI:-2.71, -0.19), nickel (β:-1.91; 95% CI:-3.65, -0.16), and vanadium (β:-1.69; 95% CI:-3.21, -0.17) was associated with lower adolescent eGFRcreat. After adjusting for multiple comparisons, p-values for associations between adolescent eGFR and chromium, nickel, vanadium and cadmium did not meet the criteria for significance. Metal mixture analyses did not identify statistically significant associations with adolescent eGFR.
CONCLUSIONS CONCLUSIONS
These findings have important implications for future studies investigating the potential mechanisms through which prenatal metal exposures affect long-term kidney health in children.

Identifiants

pubmed: 39478558
doi: 10.1186/s12940-024-01135-6
pii: 10.1186/s12940-024-01135-6
doi:

Substances chimiques

Metals 0
Environmental Pollutants 0
Metals, Heavy 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

94

Subventions

Organisme : NIH HHS
ID : R01ES033466
Pays : United States
Organisme : NIH HHS
ID : R01HD034568
Pays : United States
Organisme : NIH HHS
ID : R01ES031259
Pays : United States
Organisme : NIH HHS
ID : R00ES027508
Pays : United States

Informations de copyright

© 2024. The Author(s).

Références

Punshon T, Li Z, Marsit CJ, Jackson BP, Baker ER, Karagas MR. Placental metal concentrations in relation to maternal and infant toenails in a U.S. cohort. Environ Sci Technol. 2016;50(3):1587–94.
doi: 10.1021/acs.est.5b05316
Solhaug MJ, Bolger PM, Jose PA. The developing kidney and environmental toxins. Pediatrics. 2004;113(4 Suppl):1084–91.
doi: 10.1542/peds.113.S3.1084
Rosenblum S, Pal A, Reidy K. Renal development in the fetus and premature infant. Semin Fetal Neonatal Med. 2017;22(2):58–66.
doi: 10.1016/j.siny.2017.01.001
Hsu C-N, Tain Y-L. Adverse impact of environmental chemicals on developmental origins of kidney disease and hypertension. Front Endocrinol (Lausanne). 2021;12:745716.
doi: 10.3389/fendo.2021.745716
Liu C, He Y, Venn AJ, Jose MD, Tian J. Childhood modifiable risk factors and later life chronic kidney disease: a systematic review. BMC Nephrol. 2023;24(1):184.
doi: 10.1186/s12882-023-03232-z
Sanders AP, Saland JM, Wright RO, Satlin L. Perinatal and childhood exposure to environmental chemicals and blood pressure in children: a review of literature 2007–2017. Pediatr Res. 2018;84(2):165–80.
doi: 10.1038/s41390-018-0055-3
Hawkesworth S, Wagatsuma Y, Kippler M, Fulford AJC, Arifeen SE, Persson L-A, Moore SE, Vahter M. Early exposure to toxic metals has a limited effect on blood pressure or kidney function in later childhood, rural Bangladesh. Int J Epidemiol. 2013;42(1):176–85.
doi: 10.1093/ije/dys215
Skröder H, Hawkesworth S, Moore SE, Wagatsuma Y, Kippler M, Vahter M. Prenatal lead exposure and childhood blood pressure and kidney function. Environ Res. 2016;151:628–34.
doi: 10.1016/j.envres.2016.08.028
Akhtar E, Roy AK, Haq MA, von Ehrenstein OS, Ahmed S, Vahter M, Ekstrom E-C, Kippler M, Wagatsuma Y, Raqib R. A longitudinal study of rural Bangladeshi children with long-term arsenic and cadmium exposures and biomarkers of cardiometabolic diseases. Environ Pollut. 2021;271:116333.
doi: 10.1016/j.envpol.2020.116333
Saylor C, Tamayo-Ortiz M, Pantic I, Amarasiriwardena C, McRae N, Estrada-Gutierrez G, Parra-Hernandez S, Tolentino MC, Baccarelli AA, Fadrowski JJ, et al. Prenatal blood lead levels and reduced preadolescent glomerular filtration rate: modification by body mass index. Environ Int. 2021;154:106414.
doi: 10.1016/j.envint.2021.106414
Sanders AP, Gennings C, Tamayo-Ortiz M, Mistry S, Pantic I, Martinez M, Estrada-Gutierrez G, Espejel-Nuñez A, Olascoaga LT, Wright RO, et al. Prenatal and early childhood critical windows for the association of nephrotoxic metal and metalloid mixtures with kidney function. Environ Int. 2022;166:107361.
doi: 10.1016/j.envint.2022.107361
Politis MD, Yao M, Gennings C, Tamayo-Ortiz M, Valvi D, Kim-Schulze S, Qi J, Amarasiriwardena C, Pantic I, Tolentino MC et al. Prenatal Metal exposures and associations with kidney Injury biomarkers in children. Toxics 2022, 10(11).
Oken E, Baccarelli AA, Gold DR, Kleinman KP, Litonjua AA, De Meo D, Rich-Edwards JW, Rifas-Shiman SL, Sagiv S, Taveras EM, et al. Cohort profile: project viva. Int J Epidemiol. 2015;44(1):37–48.
doi: 10.1093/ije/dyu008
Fruh V, Rifas-Shiman SL, Coull BA, Devick KL, Amarasiriwardena C, Cardenas A, Bellinger DC, Wise LA, White RF, Wright RO, et al. Prenatal exposure to a mixture of elements and neurobehavioral outcomes in mid-childhood: results from Project viva. Environ Res. 2021;201:111540.
doi: 10.1016/j.envres.2021.111540
Lin P-ID, Cardenas A, Rifas-Shiman SL, Hivert M-F, James-Todd T, Amarasiriwardena C, Wright RO, Rahman ML, Oken E. Diet and erythrocyte metal concentrations in early pregnancy-cross-sectional analysis in Project viva. Am J Clin Nutr. 2021;114(2):540–9.
doi: 10.1093/ajcn/nqab088
Smith AR, Lin P-ID, Rifas-Shiman SL, Rahman ML, Gold DR, Baccarelli AA, Claus Henn B, Amarasiriwardena C, Wright RO, Coull B, et al. Prospective Associations of Early Pregnancy Metal Mixtures with Mitochondria DNA Copy number and telomere length in maternal and cord blood. Environ Health Perspect. 2021;129(11):117007.
doi: 10.1289/EHP9294
Fruh V, Rifas-Shiman SL, Amarasiriwardena C, Cardenas A, Bellinger DC, Wise LA, White RF, Wright RO, Oken E. Claus Henn B: prenatal lead exposure and childhood executive function and behavioral difficulties in project viva. Neurotoxicology. 2019;75:105–15.
doi: 10.1016/j.neuro.2019.09.006
Oken E, Rifas-Shiman SL, Amarasiriwardena C, Jayawardene I, Bellinger DC, Hibbeln JR, Wright RO, Gillman MW. Maternal prenatal fish consumption and cognition in mid childhood: Mercury, fatty acids, and selenium. Neurotoxicol Teratol. 2016;57:71–8.
doi: 10.1016/j.ntt.2016.07.001
Smith AR, Lin P-ID, Rifas-Shiman SL, Switkowski KM, Fleisch AF, Wright RO, Coull B, Oken E, Hivert M-F, Cardenas A. Associations between prenatal blood metals and vitamins and cord blood peptide hormone concentrations. Glob Reprod Health 2023, 7(6).
Eneanya ND, Yang W, Reese PP. Reconsidering the consequences of using race to estimate kidney function. JAMA. 2019;322(2):113–4.
doi: 10.1001/jama.2019.5774
Delgado C, Baweja M, Crews DC, Eneanya ND, Gadegbeku CA, Inker LA, Mendu ML, Miller WG, Moxey-Mims MM, Roberts GV, et al. A Unifying Approach for GFR Estimation: recommendations of the NKF-ASN Task Force on reassessing the inclusion of race in diagnosing kidney disease. Am J Kidney Dis. 2022;79(2):268–e288261.
doi: 10.1053/j.ajkd.2021.08.003
Pottel H, Hoste L, Delanaye P. Abnormal glomerular filtration rate in children, adolescents and young adults starts below 75 mL/min/1.73 m(2). Pediatr Nephrol. 2015;30(5):821–8.
doi: 10.1007/s00467-014-3002-5
Chen DC, Potok OA, Rifkin D, Estrella MM. Advantages, limitations, and clinical considerations in using cystatin C to estimate GFR. Kidney360 2022, 3(10):1807–1814.
Duncan AF, Montoya-Williams D. Recommendations for reporting research about racial disparities in medical and scientific journals. JAMA Pediatr. 2024;178(3):221–4.
doi: 10.1001/jamapediatrics.2023.5718
Flanagin A, Frey T, Christiansen SL, Committee AMAMS. Updated guidance on the reporting of race and ethnicity in medical and science journals. JAMA. 2021;326(7):621–7.
doi: 10.1001/jama.2021.13304
Poon AK, Yeung E, Boghossian N, Albert PS, Zhang C. Maternal Dietary Patterns during Third Trimester in Association with Birthweight Characteristics and Early Infant Growth. Scientifica (Cairo) 2013, 2013:786409.
Lin P-ID, Cardenas A, Rifas-Shiman SL, Zota AR, Hivert M-F, Aris IM, Sanders AP. Non-essential and essential trace element mixtures and kidney function in early pregnancy - A cross-sectional analysis in project viva. Environ Res. 2023;216(Pt 4):114846.
doi: 10.1016/j.envres.2022.114846
Digitale JC, Martin JN, Glymour MM. Tutorial on directed acyclic graphs. J Clin Epidemiol. 2022;142:264–7.
doi: 10.1016/j.jclinepi.2021.08.001
Bobb JF, Valeri L, Claus Henn B, Christiani DC, Wright RO, Mazumdar M, Godleski JJ, Coull BA. Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostatistics. 2015;16(3):493–508.
doi: 10.1093/biostatistics/kxu058
Barbier O, Jacquillet G, Tauc M, Cougnon M, Poujeol P. Effect of heavy metals on, and handling by, the kidney. Nephron Physiol. 2005;99(4):p105–110.
doi: 10.1159/000083981
Tsai C-C, Wu C-L, Kor C-T, Lian I-B, Chang C-H, Chang T-H, Chang C-C, Chiu P-F. Prospective associations between environmental heavy metal exposure and renal outcomes in adults with chronic kidney disease. Nephrol (Carlton). 2018;23(9):830–6.
doi: 10.1111/nep.13089
Levin-Schwartz Y, Politis MD, Gennings C, Tamayo-Ortiz M, Flores D, Amarasiriwardena C, Pantic I, Tolentino MC, Estrada-Gutierrez G, Lamadrid-Figueroa H et al. Nephrotoxic metal mixtures and preadolescent kidney function. Child (Basel) 2021, 8(8).
Keil AP, Buckley JP, O’Brien KM, Ferguson KK, Zhao S, White AJ. A quantile-based g-Computation Approach to addressing the effects of exposure mixtures. Environ Health Perspect. 2020;128(4):47004.
doi: 10.1289/EHP5838
Chandravanshi L, Shiv K, Kumar S. Developmental toxicity of cadmium in infants and children: a review. Environ Anal Health Toxicol. 2021;36(1):e2021003–2021000.
doi: 10.5620/eaht.2021003
Moradnia M, Attar HM, Heidari Z, Mohammadi F, Kelishadi R. Prenatal exposure to chromium (cr) and nickel (ni) in a sample of Iranian pregnant women: urinary levels and associated socio-demographic and lifestyle factors. Environ Sci Pollut Res Int. 2021;28(44):63412–21.
doi: 10.1007/s11356-021-15201-w
Hope BK. A dynamic model for the global cycling of anthropogenic vanadium. Global Biogeochem Cycles 2008, 22(4).
Rodríguez-López E, Tamayo-Ortiz M, Ariza AC, Ortiz-Panozo E, Deierlein AL, Pantic I, Tolentino MC, Estrada-Gutiérrez G, Parra-Hernández S, Espejel-Núñez A et al. Early-Life Dietary Cadmium exposure and kidney function in 9-Year-old children from the PROGRESS cohort. Toxics 2020, 8(4).
Filler G, Kobrzynski M, Sidhu HK, Belostotsky V, Huang S-HS, McIntyre C, Yang L. A cross-sectional study measuring vanadium and chromium levels in paediatric patients with CKD. BMJ Open. 2017;7(5):e014821.
doi: 10.1136/bmjopen-2016-014821
Cárdenas-González M, Osorio-Yáñez C, Gaspar-Ramírez O, Pavković M, Ochoa-Martínez A, López-Ventura D, Medeiros M, Barbier OC, Pérez-Maldonado IN, Sabbisetti VS, et al. Environmental exposure to arsenic and chromium in children is associated with kidney injury molecule-1. Environ Res. 2016;150:653–62.
doi: 10.1016/j.envres.2016.06.032
Fischer RSB, Unrine JM, Vangala C, Sanderson WT, Mandayam S, Murray KO. Evidence of nickel and other trace elements and their relationship to clinical findings in acute mesoamerican nephropathy: a case-control analysis. PLoS ONE. 2020;15(11):e0240988.
doi: 10.1371/journal.pone.0240988
Nan Y, Yang J, Ma L, Jin L, Bai Y. Associations of nickel exposure and kidney function in U.S. adults, NHANES 2017–2018. J Trace Elem Med Biol. 2022;74:127065.
doi: 10.1016/j.jtemb.2022.127065
Jacobo-Estrada T, Cardenas-Gonzalez M, Santoyo-Sánchez M, Parada-Cruz B, Uria-Galicia E, Arreola-Mendoza L, Barbier O. Evaluation of kidney injury biomarkers in rat amniotic fluid after gestational exposure to cadmium. J Appl Toxicol. 2016;36(9):1183–93.
doi: 10.1002/jat.3286
Johri N, Jacquillet G, Unwin R. Heavy metal poisoning: the effects of cadmium on the kidney. Biometals. 2010;23(5):783–92.
doi: 10.1007/s10534-010-9328-y
Chen L, Lei L, Jin T, Nordberg M, Nordberg GF. Plasma metallothionein antibody, urinary cadmium, and renal dysfunction in a Chinese type 2 diabetic population. Diabetes Care. 2006;29(12):2682–7.
doi: 10.2337/dc06-1003
Soudani N, Sefi M, Bouaziz H, Chtourou Y, Boudawara T, Zeghal N. Nephrotoxicity induced by chromium (VI) in adult rats and their progeny. Hum Exp Toxicol. 2011;30(9):1233–45.
doi: 10.1177/0960327110387454
Soudani N, Sefi M, Ben Amara I, Boudawara T, Zeghal N. Protective effects of Selenium (Se) on chromium (VI) induced nephrotoxicity in adult rats. Ecotoxicol Environ Saf. 2010;73(4):671–8.
doi: 10.1016/j.ecoenv.2009.10.002
Patlolla AK, Barnes C, Yedjou C, Velma VR, Tchounwou PB. Oxidative stress, DNA damage, and antioxidant enzyme activity induced by hexavalent chromium in Sprague-Dawley rats. Environ Toxicol. 2009;24(1):66–73.
doi: 10.1002/tox.20395
Eastmond DA, Macgregor JT, Slesinski RS. Trivalent chromium: assessing the genotoxic risk of an essential trace element and widely used human and animal nutritional supplement. Crit Rev Toxicol. 2008;38(3):173–90.
doi: 10.1080/10408440701845401
Álvarez-Barrera L, Rodríguez-Mercado JJ, Mateos-Nava RA, Ocampo-Aguilera NA, Altamirano-Lozano MA. Vanadium(IV) oxide affects embryonic development in mice. Environ Toxicol. 2022;37(7):1587–96.
doi: 10.1002/tox.23508
Gilbert T, Olaolorun F, Ladagu A, Olopade F, Igado O, Olopade J. Neurobehavioural and histological study of the effects of low-dose and high-dose vanadium in brain, liver and kidney of mice. Niger J Physiol Sci. 2023;38(1):47–56.
doi: 10.54548/njps.v38i1.8
Chen C-Y, Lin T-K, Chang Y-C, Wang Y-F, Shyu H-W, Lin K-H, Chou M-C. Nickel(II)-induced oxidative stress, apoptosis, G2/M arrest, and genotoxicity in normal rat kidney cells. J Toxicol Environ Health Part A. 2010;73(8):529–39.
doi: 10.1080/15287390903421250
Levey AS, Inker LA, Coresh J. GFR estimation: from physiology to public health. Am J Kidney Dis. 2014;63(5):820–34.
doi: 10.1053/j.ajkd.2013.12.006
Woo K-S, Choi J-L, Kim B-R, Kim J-E, Han J-Y. Clinical usefulness of serum cystatin C as a marker of renal function. Diabetes Metab J. 2014;38(4):278–84.
doi: 10.4093/dmj.2014.38.4.278
Miliku K, Bakker H, Dorresteijn EM, Cransberg K, Franco OH, Felix JF, Jaddoe VWV. Childhood estimates of glomerular filtration rate based on creatinine and cystatin C: importance of body composition. Am J Nephrol. 2017;45(4):320–6.
doi: 10.1159/000463395
Pattaro C, Riegler P, Stifter G, Modenese M, Minelli C, Pramstaller PP. Estimating the glomerular filtration rate in the general population using different equations: effects on classification and association. Nephron Clin Pract. 2013;123(1–2):102–11.
doi: 10.1159/000351043
Stevens PE, Levin A, Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group M. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med. 2013;158(11):825–30.
doi: 10.7326/0003-4819-158-11-201306040-00007
Ray RR. Adverse hematological effects of hexavalent chromium: an overview. Interdiscip Toxicol. 2016;9(2):55–65.
doi: 10.1515/intox-2016-0007
Nohr EA, Liew Z. How to investigate and adjust for selection bias in cohort studies. Acta Obstet Gynecol Scand. 2018;97(4):407–16.
doi: 10.1111/aogs.13319
Kaspar CDW, Bholah R, Bunchman TE. A review of pediatric chronic kidney disease. Blood Purif. 2016;41(1–3):211–7.
doi: 10.1159/000441737

Auteurs

Natalie F Price (NF)

Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA. nfp9@pitt.edu.

Pi-I D Lin (PD)

Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA.

Andres Cardenas (A)

Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA.

Sheryl L Rifas-Shiman (SL)

Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA.

Ami R Zota (AR)

Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.

Marie-France Hivert (MF)

Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA.
Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA.

Emily Oken (E)

Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA.

Izzuddin M Aris (IM)

Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA.

Alison P Sanders (AP)

Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH