Precision of Radiation Chemistry Networks: Playing Jenga with Kinetic Models for Liquid-Phase Electron Microscopy.
Journal
Precision chemistry
ISSN: 2771-9316
Titre abrégé: Precis Chem
Pays: United States
ID NLM: 9918574281706676
Informations de publication
Date de publication:
25 Dec 2023
25 Dec 2023
Historique:
received:
08
08
2023
revised:
08
11
2023
accepted:
10
11
2023
medline:
30
10
2024
pubmed:
30
10
2024
entrez:
30
10
2024
Statut:
epublish
Résumé
Liquid-phase transmission electron microscopy (LP-TEM) is a powerful tool to gain unique insights into dynamics at the nanoscale. The electron probe, however, can induce significant beam effects that often alter observed phenomena such as radiolysis of the aqueous phase. The magnitude of beam-induced radiolysis can be assessed by means of radiation chemistry simulations potentially enabling quantitative application of LP-TEM. Unfortunately, the computational cost of these simulations scales with the amount of reactants regarded. To minimize the computational cost, while maintaining accurate predictions, we optimize the parameter space for the solution chemistry of aqueous systems in general and for diluted HAuCl
Identifiants
pubmed: 39473579
doi: 10.1021/prechem.3c00078
pmc: PMC11503811
doi:
Types de publication
Journal Article
Langues
eng
Pagination
592-601Informations de copyright
© 2023 The Authors. Co-published by University of Science and Technology of China and American Chemical Society.
Déclaration de conflit d'intérêts
The authors declare no competing financial interest.
Références
Ultramicroscopy. 2023 Mar;245:113654
pubmed: 36470094
Nature. 2022 Sep;609(7929):942-947
pubmed: 35896149
Nat Commun. 2023 Jan 27;14(1):447
pubmed: 36707510
Nanoscale. 2020 Oct 22;12(40):20649-20657
pubmed: 32614016
Proc Natl Acad Sci U S A. 2023 Jun 6;120(23):e2101243120
pubmed: 37252978
J Phys Chem Lett. 2023 May 25;14(20):4644-4651
pubmed: 37167107
Chem Rev. 2021 Jan 27;121(2):882-961
pubmed: 32986414
Angew Chem Int Ed Engl. 2020 Dec 14;59(51):23180-23187
pubmed: 32881197
Nano Lett. 2014 Jan 8;14(1):359-64
pubmed: 24299122
Sci Adv. 2018 Apr 20;4(4):eaaq1202
pubmed: 29725619
Chem Rec. 2019 Oct;19(10):2130-2142
pubmed: 30589199
Nat Chem. 2017 Jan;9(1):77-82
pubmed: 27995918
Nanoscale Adv. 2021 Feb 19;3(9):2466-2474
pubmed: 36134158
Adv Mater. 2016 Sep;28(35):7716-22
pubmed: 27375052
Nat Mater. 2022 Aug;21(8):859-863
pubmed: 35618827
J Phys Chem A. 2011 Feb 3;115(4):383-91
pubmed: 21174474
Acc Chem Res. 2016 Sep 20;49(9):2015-22
pubmed: 27541965
J Phys Chem A. 2023 Mar 23;127(11):2545-2553
pubmed: 36913529
ACS Energy Lett. 2023 Jul 12;8(8):3323-3329
pubmed: 37588015
ACS Nano. 2023 Mar 28;17(6):5609-5619
pubmed: 36881385
Nano Lett. 2015 Aug 12;15(8):5314-20
pubmed: 26207841
Phys Chem Chem Phys. 2021 Sep 7;23(33):17766-17773
pubmed: 33729249
Adv Sci (Weinh). 2022 Sep;9(25):e2202803
pubmed: 35780494
Adv Sci (Weinh). 2023 Sep;10(25):e2301904
pubmed: 37439408
Ultramicroscopy. 2022 Oct;240:113579
pubmed: 35780682
ACS Omega. 2022 Apr 21;7(17):15113-15122
pubmed: 35572744
Chem Sci. 2019 Aug 16;10(38):8735-8743
pubmed: 32133124
Nano Lett. 2021 Jan 27;21(2):1141-1149
pubmed: 33448858
Nanoscale. 2018 Apr 26;10(16):7702-7710
pubmed: 29651479