Treatment with oclacitinib, a Janus kinase inhibitor, down-regulates and up-regulates CD25 and Foxp3 expression, respectively, in peripheral blood T cells of dogs with atopic dermatitis.
Animals
Dermatitis, Atopic
/ drug therapy
Dogs
Pyrimidines
/ pharmacology
Forkhead Transcription Factors
/ metabolism
Sulfonamides
/ pharmacology
Male
CD8-Positive T-Lymphocytes
/ drug effects
Female
Interleukin-2 Receptor alpha Subunit
/ metabolism
Dog Diseases
/ drug therapy
Down-Regulation
/ drug effects
CD4-Positive T-Lymphocytes
/ drug effects
Janus Kinase Inhibitors
/ therapeutic use
Up-Regulation
/ drug effects
Atopic dermatitis
CD4+ cells
CD8+ cells
Dogs
Oclacitinib
Treg cells
Journal
BMC veterinary research
ISSN: 1746-6148
Titre abrégé: BMC Vet Res
Pays: England
ID NLM: 101249759
Informations de publication
Date de publication:
26 Oct 2024
26 Oct 2024
Historique:
received:
15
07
2024
accepted:
18
10
2024
medline:
27
10
2024
pubmed:
27
10
2024
entrez:
27
10
2024
Statut:
epublish
Résumé
Oclacitinib (OCL), a Janus kinase inhibitor, is a novel immunomodulatory/immunosuppressive agent which is an approved as the first-line treatment for atopic dermatitis (AD) in dogs. The aim of the study was to investigate the effects of OCL on CD4 The study showed that the mean percentage and absolute count of CD4 The findings of the study strongly suggest that: (a) in terms of the impact of OCL on the number of PB CD4
Sections du résumé
BACKGROUND
BACKGROUND
Oclacitinib (OCL), a Janus kinase inhibitor, is a novel immunomodulatory/immunosuppressive agent which is an approved as the first-line treatment for atopic dermatitis (AD) in dogs. The aim of the study was to investigate the effects of OCL on CD4
RESULTS
RESULTS
The study showed that the mean percentage and absolute count of CD4
CONCLUSIONS
CONCLUSIONS
The findings of the study strongly suggest that: (a) in terms of the impact of OCL on the number of PB CD4
Identifiants
pubmed: 39462373
doi: 10.1186/s12917-024-04340-0
pii: 10.1186/s12917-024-04340-0
doi:
Substances chimiques
Pyrimidines
0
oclacitinib
99GS5XTB51
Forkhead Transcription Factors
0
Sulfonamides
0
Interleukin-2 Receptor alpha Subunit
0
Janus Kinase Inhibitors
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
489Informations de copyright
© 2024. The Author(s).
Références
Gonzales AJ, Bowman JW, Fici GJ, Zhang M, Mann DW, Mitton-Fry M. Oclacitinib (APOQUEL
doi: 10.1111/jvp.12101
pubmed: 24495176
pmcid: 4265276
Aleo MM, Messamore J, Nieto BA, Fleck TJ, Humphrey WR, Coscarelli EM, Mahabir SP, McCall RB, Gonzales AJ. Lack of interference of Oclacitinib with the results of intradermal testing or allergen-specific IgE serology in Dermatophagoides farinae-sensitized beagle dogs. Vet Immunol Immunopathol. 2023;256:110537.
doi: 10.1016/j.vetimm.2022.110537
pubmed: 36603446
EMA/436990/2013. Available here: www.ema.europa.eu/en/documents/overview/apoquel-epar-summary-public_en.pdf
US Food and Drug Administration. Apoquel. Oclacitinib Tablet. Freedom of information summary. Original new drug application. NADA 141–345. Available here: www.animaldrugsatfda.fda.gov/adafda/app/search/public/document/downloadFoi/902
Apoquel. Summary of product characteristics. Available from here: www.ec.europa.eu/health/documents/community-register/2013/20130912126630/anx_126630_en.pdf
Bajwa J. Canine superficial pyoderma and therapeutic considerations. Can Vet J. 2016;57:204–6.
pubmed: 26834275
pmcid: 4713004
Hillier A, Lloyd DH, Weese JS, Blondeau JM, Boothe D, Breitschwerdt E, Guardabassi L, Papich MG, Rankin S, Turnidge JD, Sykes JE. Guidelines for the diagnosis and antimicrobial therapy of canine superficial bacterial folliculitis (Antimicrobial Guidelines Working Group of the International Society for Companion Animal Infectious Diseases). Vet Dermatol. 2014;25:163–e43.
doi: 10.1111/vde.12118
pubmed: 24720433
Jasiecka-Mikołajczyk A, Jaroszewski JJ, Maślanka T. Oclacitinib depletes canine CD4
doi: 10.1016/j.rvsc.2018.10.014
pubmed: 30391724
Jasiecka-Mikołajczyk A, Maślanka T. Depletion of T and B cells in lymphoid tissues of mice induced by oclacitinib, a Janus kinase inhibitor. Pol J Vet Sci. 2023;26:431–40.
doi: 10.24425/pjvs.2023.145049
pubmed: 37727128
Jasiecka-Mikołajczyk A, Jaroszewski JJ, Maślanka T. Oclacitinib, a Janus Kinase Inhibitor, reduces the frequency of IL-4- and IL-10-, but not IFN-γ-, producing murine CD4
doi: 10.3390/molecules26185655
pubmed: 34577127
pmcid: 8472008
Churlaud G, Pitoiset F, Jebbawi F, Lorenzon R, Bellier B, Rosenzwajg M, Klatzmann D. Human and mouse CD8(+)CD25(+)FOXP3(+) Regulatory T cells at Steady State and during Interleukin-2 therapy. Front Immunol. 2015;6:171.
doi: 10.3389/fimmu.2015.00171
pubmed: 25926835
pmcid: 4397865
Lin L, Dai F, Wei J, Chen Z. CD8
doi: 10.1186/s13223-021-00577-8
pubmed: 34294130
pmcid: 8296699
Fontenot JD, Rudensky AY. A well-adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol. 2005;6:331–7.
doi: 10.1038/ni1179
pubmed: 15785758
Mahic M, Henjum K, Yaqub S, Bjørnbeth BA, Torgersen KM, Taskén K, Aandahl EM. Generation of highly suppressive adaptive CD8
doi: 10.1002/eji.200737529
pubmed: 18266270
Ménoret S, Tesson L, Remy S, Gourain V, Sérazin C, Usal C, Guiffes A, Chenouard V, Ouisse LH, Gantier M, Heslan JM, Fourgeux C, Poschmann J, Guillonneau C, Anegon I. CD4
doi: 10.1186/s12915-022-01502-0
pubmed: 36635667
pmcid: 9837914
Wing JB, Tanaka A, Sakaguchi S. Human FOXP3
doi: 10.1016/j.immuni.2019.01.020
pubmed: 30784578
Keppel KE, Campbell KL, Zuckermann FA, Greeley EA, Schaeffer DJ, Husmann RJ. Quantitation of canine regulatory T cell populations, serum interleukin-10 and allergen-specific IgE concentrations in healthy control dogs and canine atopic dermatitis patients receiving allergen-specific immunotherapy. Vet Immunol Immunopathol. 2008;123:337–44.
doi: 10.1016/j.vetimm.2008.02.008
pubmed: 18423890
Lee J-VD, Rutten A, Bruijn VP, Willemse J, Broere T. CD4
doi: 10.1111/vde.12140
Goldstein JD, Burlion A, Zaragoza B, Sendeyo K, Polansky JK, Huehn J, Piaggio E, Salomon BL, Marodon G. Inhibition of the JAK/STAT Signaling Pathway in Regulatory T Cells reveals a very dynamic regulation of Foxp3 expression. PLoS ONE. 2016;11:e0153682.
doi: 10.1371/journal.pone.0153682
pubmed: 27077371
pmcid: 4831811
De Caro Martins G, da Costa-Val AP, Coura FM, Diamantino GML, Nogueira MM, de Melo-Junior O. Immunomodulatory effect of long-term oclacitinib maleate therapy in dogs with atopic dermatitis. Vet Dermatol. 2022;33:142–e40.
doi: 10.1111/vde.13037
pubmed: 34747068
Plager DA, Torres SMF, Koch SN, Kita H. Gene transcription abnormalities in canine atopic dermatitis and related human eosinophilic allergic diseases. Vet Immunol Immunopathol. 2012;149:136–42.
doi: 10.1016/j.vetimm.2012.06.003
pubmed: 22749291
pmcid: 4459581
Ramirez GA, Yacoub MR, Ripa M, Mannina D, Cariddi A, Saporiti N, Ciceri F, Castagna A, Colombo G, Dagna L. Eosinophils from physiology to Disease: a Comprehensive Review. Biomed Res Int. 2018;9095275.
Maślanka T, Jaroszewski JJ. In Vitro effects of dexamethasone on bovine CD25
doi: 10.1016/j.rvsc.2012.01.018
pubmed: 22349593
Liao W, Lin JX, Leonard WJ. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity. 2013;38:13–25.
doi: 10.1016/j.immuni.2013.01.004
pubmed: 23352221
pmcid: 3610532
Sowden JM, Powell RJ, Allen BR. Selective activation of circulating CD4
doi: 10.1111/j.1365-2133.1992.tb00119.x
pubmed: 1390166
Walker C, Kägi MK, Ingold P, Braun P, Blaser K, Bruijnzeel-Koomen CA, Wüthrich B. Atopic dermatitis: correlation of peripheral blood T cell activation, eosinophilia and serum factors with clinical severity. Clin Exp Allergy. 1993;23:145–53.
doi: 10.1111/j.1365-2222.1993.tb00310.x
pubmed: 8448682
Majewska A, Dembele K, Dziendzikowska K, Prostek A, Gajewska M. Cytokine and lymphocyte profiles in dogs with atopic dermatitis after Allergen-Specific Immunotherapy. Vaccines. 2022;10:1037.
doi: 10.3390/vaccines10071037
pubmed: 35891200
pmcid: 9323343
Majewska A, Gajewska M, Dembele K, Maciejewski H, Prostek A, Jank M. Lymphocytic, cytokine and transcriptomic profiles in peripheral blood of dogs with atopic dermatitis. BMC Vet Res. 2016;12:174.
doi: 10.1186/s12917-016-0805-6
pubmed: 27553600
pmcid: 4995625
Saleh R, Elkord E. FoxP3
doi: 10.1016/j.canlet.2020.07.022
pubmed: 32721551
Favrot C, Steffan J, Seewald W, Picco F. A prospective study on the clinical features of chronic canine atopic dermatitis and its diagnosis. Vet Dermatol. 2010;21:23–31.
doi: 10.1111/j.1365-3164.2009.00758.x
pubmed: 20187911
Maślanka T, Jaroszewski JJ, Markiewicz W, Jasiecka A, Ziółkowski H, Jędrzkiewicz D. Effects of dexamethasone and meloxicam on bovine CD25
doi: 10.1016/j.rvsc.2012.12.005
pubmed: 23286953
Collard WT, Hummel BD, Fielder AF, King VL, Boucher JF, Mullins MA, Malpas PB, Stegemann MR. The pharmacokinetics of oclacitinib maleate, a Janus kinase inhibitor, in the dog. J Vet Pharmacol Ther. 2014;37:279–85.
doi: 10.1111/jvp.12087
pubmed: 24330031
Jasiecka-Mikołajczyk A, Socha P. Teriflunomide inhibits activation-induced CD25 expression on T cells and may affect Foxp3-expressing regulatory T cells. Res Vet Sci. 2020;132:17–27.
doi: 10.1016/j.rvsc.2020.05.011
pubmed: 32474261
Biller BJ, Elmslie RE, Burnett RC, Avery AC, Dow SW. Use of FoxP3 expression to identify regulatory T cells in healthy dogs and dogs with cancer. Vet Immunol Immunopathol. 2007;116:69–78.
doi: 10.1016/j.vetimm.2006.12.002
pubmed: 17224188
Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4
doi: 10.1038/ni904
pubmed: 12612578
Curotto de Lafaille MA, Lino AC, Kutchukhidze N, Lafaille JJ. CD25- T cells generate CD25
doi: 10.4049/jimmunol.173.12.7259
pubmed: 15585848