Nucleos(t)ide analogues potentially activate T lymphocytes through inducing interferon expression in hepatic cells and patients with chronic hepatitis B.
Humans
Hepatitis B, Chronic
/ immunology
Male
Female
Adult
Hepatitis B virus
/ immunology
Antiviral Agents
/ pharmacology
Hep G2 Cells
T-Lymphocytes
/ immunology
Middle Aged
Interferons
/ metabolism
Lymphocyte Activation
/ drug effects
Nucleosides
/ pharmacology
Liver
/ metabolism
DNA, Viral
Alanine Transaminase
/ blood
CD4+ T cells
CD8+ T cells
HBV
IFN
Nucleoside/nucleotide analogues (NAs)
PD-L1
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
25 Oct 2024
25 Oct 2024
Historique:
received:
06
05
2024
accepted:
11
10
2024
medline:
26
10
2024
pubmed:
26
10
2024
entrez:
25
10
2024
Statut:
epublish
Résumé
Chronic hepatitis B (CHB) leads to liver inflammation and dysfunction, resulting in liver fibrosis and cancer. Nucleos(t)ide analogues (NAs), inhibitors of hepatitis B virus (HBV), specifically suppress HBV replication. We proposed that immune modulation benefits seroconversion by HBsAg loss. However, activation of T lymphocytes also deteriorates hepatic inflammation. Therefore, we intended to investigate the T cell status and its relationship with hepatic functions in CHB patients treated with NAs. Serum markers, including liver function markers AST, ALT, and HBV-infected markers HBV DNA, HBsAg, HBeAg, and HBsAb were measured in the clinical routine. The T cell levels and markers, including CD69, CD107a, CXCR3, and PD-1 were investigated using flow cytometry. Meanwhile, IFNγ, IL-2, and CXCL10 as immune activation markers in the PBMCs were investigated using qPCR. To validate the effects of NAs on T cell status, qPCR and flow cytometry were used to investigate the gene expression in the HepG2 and PLC5 cells treated with NAs, and in the healthy PBMCs treated with the cell-cultured supernatant. We found that NAs significantly suppressed HBV DNA and reduced AST and ALT levels in the CHB patients. Meanwhile, AST and ALT were both positively correlated with activation marker CD107a in CD8
Identifiants
pubmed: 39455685
doi: 10.1038/s41598-024-76270-8
pii: 10.1038/s41598-024-76270-8
doi:
Substances chimiques
Antiviral Agents
0
Interferons
9008-11-1
Nucleosides
0
DNA, Viral
0
Alanine Transaminase
EC 2.6.1.2
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
25286Subventions
Organisme : Cheng Hsin General Hospital, Taiwan
ID : CHGH113-112-N03
Organisme : National Science and Technology Council
ID : NSTC 112-2314-B-182-048
Organisme : Chang Gung University, Taiwan
ID : UMRPD1N0091
Informations de copyright
© 2024. The Author(s).
Références
Martinez, M. G., Boyd, A., Combe, E., Testoni, B. & Zoulim, F. Covalently closed circular DNA: The ultimate therapeutic target for curing HBV infections. J. Hepatol. 75, 706–717. https://doi.org/10.1016/j.jhep.2021.05.013 (2021).
doi: 10.1016/j.jhep.2021.05.013
pubmed: 34051332
Seto, W. K., Lo, Y. R., Pawlotsky, J. M. & Yuen, M. F. Chronic hepatitis B virus infection. Lancet. 392, 2313–2324. https://doi.org/10.1016/S0140-6736(18)31865-8 (2018).
doi: 10.1016/S0140-6736(18)31865-8
pubmed: 30496122
Liang, K. H. et al. Peginterferon is superior to nucleos(t)ide analogues for prevention of hepatocellular carcinoma in chronic hepatitis B. J. Infect. Dis. 213, 966–974. https://doi.org/10.1093/infdis/jiv547 (2016).
doi: 10.1093/infdis/jiv547
pubmed: 26582959
Zoulim, F., Lebosse, F. & Levrero, M. Current treatments for chronic hepatitis B virus infections. Curr. Opin. Virol. 18, 109–116. https://doi.org/10.1016/j.coviro.2016.06.004 (2016).
doi: 10.1016/j.coviro.2016.06.004
pubmed: 27318098
Chien, R. N. & Liaw, Y. F. Current trend in antiviral therapy for chronic hepatitis B. Viruses 14, doi: (2022). https://doi.org/10.3390/v14020434
Cathcart, A. L. et al. No resistance to tenofovir alafenamide detected through 96 weeks of treatment in patients with chronic Hepatitis B infection. Antimicrob. Agents Chemother. 62 https://doi.org/10.1128/AAC.01064-18 (2018).
Tenney, D. J. et al. Long-term monitoring shows hepatitis B virus resistance to entecavir in nucleoside-naive patients is rare through 5 years of therapy. Hepatology. 49, 1503–1514. https://doi.org/10.1002/hep.22841 (2009).
doi: 10.1002/hep.22841
pubmed: 19280622
Wu, C. Y. et al. Association of nucleos(t)ide analogue therapy with reduced risk of hepatocellular carcinoma in patients with chronic hepatitis B: a nationwide cohort study. Gastroenterology. 147, 143–151e145. https://doi.org/10.1053/j.gastro.2014.03.048 (2014).
doi: 10.1053/j.gastro.2014.03.048
pubmed: 24704525
Wu, C. Y. et al. Association between nucleoside analogues and risk of hepatitis B virus–related hepatocellular carcinoma recurrence following liver resection. Jama. 308, 1906–1914. https://doi.org/10.1001/2012.jama.11975 (2012).
doi: 10.1001/2012.jama.11975
pubmed: 23162861
Chu, C. M. & Liaw, Y. F. HBsAg seroclearance in asymptomatic carriers of high endemic areas: Appreciably high rates during a long-term follow-up. Hepatology. 45, 1187–1192. https://doi.org/10.1002/hep.21612 (2007).
doi: 10.1002/hep.21612
pubmed: 17465003
Marcellin, P. et al. Hepatitis B surface antigen levels: Association with 5-year response to peginterferon alfa-2a in hepatitis B e-antigen-negative patients. Hepatol. Int. 7, 88–97. https://doi.org/10.1007/s12072-012-9343-x (2013).
doi: 10.1007/s12072-012-9343-x
pubmed: 23518903
Xia, Y. & Protzer, U. Control of Hepatitis B Virus by cytokines. Viruses. 9 https://doi.org/10.3390/v9010018 (2017).
Chang, T. T. et al. Entecavir treatment for up to 5 years in patients with hepatitis B e antigen-positive chronic hepatitis B. Hepatology. 51, 422–430. https://doi.org/10.1002/hep.23327 (2010).
doi: 10.1002/hep.23327
pubmed: 20049753
Wursthorn, K. et al. Kinetics of hepatitis B surface antigen decline during 3 years of telbivudine treatment in hepatitis B e antigen-positive patients. Hepatology. 52, 1611–1620. https://doi.org/10.1002/hep.23905 (2010).
doi: 10.1002/hep.23905
pubmed: 20931556
Buti, M. et al. Seven-year efficacy and safety of treatment with tenofovir disoproxil fumarate for chronic hepatitis B virus infection. Dig. Dis. Sci. 60, 1457–1464. https://doi.org/10.1007/s10620-014-3486-7 (2015).
doi: 10.1007/s10620-014-3486-7
pubmed: 25532501
Boni, C. et al. Restored function of HBV-specific T cells after long-term effective therapy with nucleos(t)ide analogues. Gastroenterology. 143, 963–973e969. https://doi.org/10.1053/j.gastro.2012.07.014 (2012).
doi: 10.1053/j.gastro.2012.07.014
pubmed: 22796241
Li, X. et al. Tenofovir alters the immune microenvironment of pregnant women with hepatitis B virus infection: Evidence from single-cell RNA sequencing. Int. Immunopharmacol. 119, 110245. https://doi.org/10.1016/j.intimp.2023.110245 (2023).
doi: 10.1016/j.intimp.2023.110245
pubmed: 37163920
Wang, H. et al. Comparison of histologic characteristics of Chinese chronic hepatitis B patients with persistently normal or mildly elevated ALT. PLoS One. 8, e80585. https://doi.org/10.1371/journal.pone.0080585 (2013).
doi: 10.1371/journal.pone.0080585
pubmed: 24260428
pmcid: 3832452
Garcia-Diaz, A. et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell. Rep. 19, 1189–1201. https://doi.org/10.1016/j.celrep.2017.04.031 (2017).
doi: 10.1016/j.celrep.2017.04.031
pubmed: 28494868
pmcid: 6420824
Marciano, S. & Gadano, A. Why not to stop antiviral treatment in patients with chronic hepatitis B. Liver Int. 38 (Suppl 1), 97–101. https://doi.org/10.1111/liv.13627 (2018).
doi: 10.1111/liv.13627
pubmed: 29427480
Luxenburger, H. & Neumann-Haefelin, C. Liver-resident CD8 + T cells in viral hepatitis: not always good guys. J. Clin. Invest. 133 https://doi.org/10.1172/JCI165033 (2023).
Thimme, R. et al. CD8(+) T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J. Virol. 77, 68–76. https://doi.org/10.1128/jvi.77.1.68-76.2003 (2003).
doi: 10.1128/jvi.77.1.68-76.2003
pubmed: 12477811
pmcid: 140637
Boni, C. et al. Restored function of HBV-specific T cells after long-term effective therapy with nucleos(t)ide analogues. Gastroenterology 143, 963–973 e969, doi: (2012). https://doi.org/10.1053/j.gastro.2012.07.014
Schneider, W. M., Chevillotte, M. D. & Rice, C. M. Interferon-stimulated genes: A complex web of host defenses. Annu. Rev. Immunol. 32, 513–545. https://doi.org/10.1146/annurev-immunol-032713-120231 (2014).
doi: 10.1146/annurev-immunol-032713-120231
pubmed: 24555472
pmcid: 4313732
Guo, F. et al. STING agonists induce an innate antiviral immune response against hepatitis B virus. Antimicrob. Agents Chemother. 59, 1273–1281. https://doi.org/10.1128/AAC.04321-14 (2015).
doi: 10.1128/AAC.04321-14
pubmed: 25512416
pmcid: 4335851
Yu, R., Zhu, B. & Chen, D. Type I interferon-mediated tumor immunity and its role in immunotherapy. Cell. Mol. Life Sci. 79, 191. https://doi.org/10.1007/s00018-022-04219-z (2022).
doi: 10.1007/s00018-022-04219-z
pubmed: 35292881
pmcid: 8924142
Lucifora, J. et al. Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA. Science. 343, 1221–1228. https://doi.org/10.1126/science.1243462 (2014).
doi: 10.1126/science.1243462
pubmed: 24557838
pmcid: 6309542
Hu, T. T. et al. Expansion of circulating TFH cells and their associated molecules: Involvement in the immune landscape in patients with chronic HBV infection. Virol. J. 11, 54. https://doi.org/10.1186/1743-422X-11-54 (2014).
doi: 10.1186/1743-422X-11-54
pubmed: 24655429
pmcid: 3994480
Vyas, A. K., Sharma, B. C., Sarin, S. K. & Trehanpati, N. Immune correlates of hepatitis B surface antigen spontaneous seroconversion in hepatitis B e antigen negative chronic hepatitis B patients. Liver Int. 38, 38–49. https://doi.org/10.1111/liv.13475 (2018).
doi: 10.1111/liv.13475
pubmed: 28500636