Convergent inducers and effectors of T cell paralysis in the tumour microenvironment.
Journal
Nature reviews. Cancer
ISSN: 1474-1768
Titre abrégé: Nat Rev Cancer
Pays: England
ID NLM: 101124168
Informations de publication
Date de publication:
24 Oct 2024
24 Oct 2024
Historique:
accepted:
23
09
2024
medline:
25
10
2024
pubmed:
25
10
2024
entrez:
25
10
2024
Statut:
aheadofprint
Résumé
Tumorigenesis embodies the formation of a heterotypic tumour microenvironment (TME) that, among its many functions, enables the evasion of T cell-mediated immune responses. Remarkably, most TME cell types, including cancer cells, fibroblasts, myeloid cells, vascular endothelial cells and pericytes, can be stimulated to deploy immunoregulatory programmes. These programmes involve regulatory inducers (signals-in) and functional effectors (signals-out) that impair CD8
Identifiants
pubmed: 39448877
doi: 10.1038/s41568-024-00761-z
pii: 10.1038/s41568-024-00761-z
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. Springer Nature Limited.
Références
Larkin, J. et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 381, 1535–1546 (2019).
pubmed: 31562797
doi: 10.1056/NEJMoa1910836
Gill, J. & Prasad, V. A reality check of the accelerated approval of immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol. 16, 656–658 (2019).
pubmed: 31383994
doi: 10.1038/s41571-019-0260-y
Haslam, A. & Prasad, V. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw. Open 2, e192535 (2019).
pubmed: 31050774
pmcid: 6503493
doi: 10.1001/jamanetworkopen.2019.2535
Yi, M. et al. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol. Cancer 21, 28 (2022).
pubmed: 35062949
pmcid: 8780712
doi: 10.1186/s12943-021-01489-2
Daly, R. J., Scott, A. M., Klein, O. & Ernst, M. Enhancing therapeutic anti-cancer responses by combining immune checkpoint and tyrosine kinase inhibition. Mol. Cancer 21, 189 (2022).
pubmed: 36175961
pmcid: 9523960
doi: 10.1186/s12943-022-01656-z
Schoenfeld, A. J. & Hellmann, M. D. Acquired resistance to immune checkpoint inhibitors. Cancer Cell 37, 443–455 (2020).
pubmed: 32289269
pmcid: 7182070
doi: 10.1016/j.ccell.2020.03.017
Finck, A. V., Blanchard, T., Roselle, C. P., Golinelli, G. & June, C. H. Engineered cellular immunotherapies in cancer and beyond. Nat. Med. 28, 678–689 (2022).
pubmed: 35440724
pmcid: 9305718
doi: 10.1038/s41591-022-01765-8
Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020).
pubmed: 32433532
pmcid: 7238960
doi: 10.1038/s41577-020-0306-5
Kalbasi, A. & Ribas, A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat. Rev. Immunol. 20, 25–39 (2020).
pubmed: 31570880
doi: 10.1038/s41577-019-0218-4
Negi, N. & Das, B. K. CNS: not an immunoprivilaged site anymore but a virtual secondary lymphoid organ. Int. Rev. Immunol. 37, 57–68 (2018).
pubmed: 28961037
doi: 10.1080/08830185.2017.1357719
Griffith, T. S., Brunner, T., Fletcher, S. M., Green, D. R. & Ferguson, T. A. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270, 1189–1192 (1995).
pubmed: 7502042
doi: 10.1126/science.270.5239.1189
Engelhardt, B., Vajkoczy, P. & Weller, R. O. The movers and shapers in immune privilege of the CNS. Nat. Immunol. 18, 123–131 (2017).
pubmed: 28092374
doi: 10.1038/ni.3666
Medawar, P. B. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br. J. Exp. Pathol. 29, 58–69 (1948).
pubmed: 18865105
pmcid: 2073079
Joyce, J. A. & Fearon, D. T. T cell exclusion, immune privilege, and the tumor microenvironment. Science 348, 74–80 (2015).
pubmed: 25838376
doi: 10.1126/science.aaa6204
Giles, J. R., Globig, A.-M., Kaech, S. M. & Wherry, E. J. CD8
pubmed: 37820583
pmcid: 11237652
doi: 10.1016/j.immuni.2023.09.005
Seo, W., Jerin, C. & Nishikawa, H. Transcriptional regulatory network for the establishment of CD8
pubmed: 33627794
pmcid: 8080584
doi: 10.1038/s12276-021-00568-0
Chopp, L., Redmond, C., O’Shea, J. J. & Schwartz, D. M. From thymus to tissues and tumors: a review of T-cell biology. J. Allergy Clin. Immunol. 151, 81–97 (2023).
pubmed: 36272581
doi: 10.1016/j.jaci.2022.10.011
Yuan, S., Almagro, J. & Fuchs, E. Beyond genetics: driving cancer with the tumour microenvironment behind the wheel. Nat. Rev. Cancer 24, 274–286 (2024).
pubmed: 38347101
pmcid: 11077468
doi: 10.1038/s41568-023-00660-9
de Visser, K. E. & Joyce, J. A. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell 41, 374–403 (2023).
pubmed: 36917948
doi: 10.1016/j.ccell.2023.02.016
Jardim, D. L., Goodman, A., de Melo Gagliato, D. & Kurzrock, R. The challenges of tumor mutational burden as an immunotherapy biomarker. Cancer Cell 39, 154–173 (2021).
pubmed: 33125859
doi: 10.1016/j.ccell.2020.10.001
Spranger, S. et al. Density of immunogenic antigens does not explain the presence or absence of the T-cell-inflamed tumor microenvironment in melanoma. Proc. Natl Acad. Sci. USA 113, E7759–E7768 (2016). This study shows that neoantigens can be equally abundant in T cell-inflamed versus T cell-uninflamed melanoma tumours, implicating that the immunosuppressive TME, along with cancer cell-intrinsic mechanisms, has a key role in regulating T cell responses.
pubmed: 27837020
pmcid: 5137753
doi: 10.1073/pnas.1609376113
Leone, P. et al. MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells. J. Natl Cancer Inst. 105, 1172–1187 (2013).
pubmed: 23852952
doi: 10.1093/jnci/djt184
Kraemer, A. I. et al. The immunopeptidome landscape associated with T cell infiltration, inflammation and immune editing in lung cancer. Nat. Cancer 4, 608–628 (2023). In this study of lung cancer, neoantigen density does not correlate with T cell inflammation; instead, it is associated with immunoediting in non-inflamed tumours.
pubmed: 37127787
pmcid: 10212769
doi: 10.1038/s43018-023-00548-5
Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).
pubmed: 21436444
doi: 10.1126/science.1203486
Kalluri, R. & Weinberg, R. A. The basics of epithelial–mesenchymal transition. J. Clin. Invest. 119, 1420–1428 (2009).
pubmed: 19487818
pmcid: 2689101
doi: 10.1172/JCI39104
Dongre, A. et al. Direct and indirect regulators of epithelial-mesenchymal transition-mediated immunosuppression in breast carcinomas. Cancer Discov. 11, 1286–1305 (2021). This study in mouse breast cancer models illuminates and functionally validates signals-out that programme immunosuppression in the TME in the context of EMP.
pubmed: 33328216
doi: 10.1158/2159-8290.CD-20-0603
Lüönd, F. et al. Distinct contributions of partial and full EMT to breast cancer malignancy. Dev. Cell 56, 3203–3221.e11 (2021).
pubmed: 34847378
doi: 10.1016/j.devcel.2021.11.006
Gu, Y., Zhang, Z. & Ten Dijke, P. Harnessing epithelial–mesenchymal plasticity to boost cancer immunotherapy. Cell Mol. Immunol. 20, 318–340 (2023).
pubmed: 36823234
pmcid: 10066239
doi: 10.1038/s41423-023-00980-8
Singh, D. & Siddique, H. R. Epithelial-to-mesenchymal transition in cancer progression: unraveling the immunosuppressive module driving therapy resistance. Cancer Metastasis Rev. 43, 155–173 (2024).
pubmed: 37775641
doi: 10.1007/s10555-023-10141-y
Chen, Z., Han, F., Du, Y., Shi, H. & Zhou, W. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 8, 70 (2023).
pubmed: 36797231
pmcid: 9935926
doi: 10.1038/s41392-023-01332-8
Semenza, G. L. Targeting intratumoral hypoxia to enhance anti-tumor immunity. Semin. Cancer Biol. 96, 5–10 (2023).
pubmed: 37717718
doi: 10.1016/j.semcancer.2023.09.002
Sadozai, H. et al. High hypoxia status in pancreatic cancer is associated with multiple hallmarks of an immunosuppressive tumor microenvironment. Front. Immunol. 15, 1360629 (2024). This study illustrates the functional effects of hypoxia on programming the TME, implicating various signals-out.
pubmed: 38510243
pmcid: 10951397
doi: 10.3389/fimmu.2024.1360629
Chen, S.-Y., Mamai, O. & Akhurst, R. J. TGFβ: signaling blockade for cancer immunotherapy. Annu. Rev. Cancer Biol. 6, 123–146 (2022).
pubmed: 36382146
doi: 10.1146/annurev-cancerbio-070620-103554
Derynck, R., Turley, S. J. & Akhurst, R. J. TGFβ biology in cancer progression and immunotherapy. Nat. Rev. Clin. Oncol. 18, 9–34 (2021).
pubmed: 32710082
doi: 10.1038/s41571-020-0403-1
Thomas, D. A. & Massagué, J. TGF-β directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 8, 369–380 (2005).
pubmed: 16286245
doi: 10.1016/j.ccr.2005.10.012
Gorelik, L. & Flavell, R. A. Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells. Nat. Med. 7, 1118–1122 (2001). This is a groundbreaking study that functionally validates TGFβ in the suppression of antitumour immunity.
pubmed: 11590434
doi: 10.1038/nm1001-1118
Chen, X.-H. et al. TGF-β and EGF induced HLA-I downregulation is associated with epithelial-mesenchymal transition (EMT) through upregulation of snail in prostate cancer cells. Mol. Immunol. 65, 34–42 (2015).
pubmed: 25618241
doi: 10.1016/j.molimm.2014.12.017
Chen, L. et al. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat. Commun. 5, 5241 (2014). This study describes a signalling pathway governing EMP that induces PDL1 expression, facilitating immune evasion in lung cancer.
pubmed: 25348003
doi: 10.1038/ncomms6241
Mahadevan, K. K. et al. Elimination of oncogenic KRAS in genetic mouse models eradicates pancreatic cancer by inducing FAS-dependent apoptosis by CD8
pubmed: 37625403
pmcid: 10810082
doi: 10.1016/j.devcel.2023.07.025
Mahadevan, K. K. et al. KRASG12D inhibition reprograms the microenvironment of early and advanced pancreatic cancer to promote FAS-mediated killing by CD8
pubmed: 37625401
pmcid: 10785700
doi: 10.1016/j.ccell.2023.07.002
Briere, D. M. et al. The KRAS
pubmed: 33722854
pmcid: 8444277
doi: 10.1158/1535-7163.MCT-20-0462
Mou, H. et al. Genetic disruption of oncogenic Kras sensitizes lung cancer cells to Fas receptor-mediated apoptosis. Proc. Natl Acad. Sci. USA 114, 3648–3653 (2017). This article provides further evidence, using a pharmacological knockout, for the programming of immune evasion by oncogenic KRAS.
pubmed: 28320962
pmcid: 5389295
doi: 10.1073/pnas.1620861114
Zhang, Z. et al. A covalent inhibitor of K-Ras(G12C) induces MHC class I presentation of haptenated peptide neoepitopes targetable by immunotherapy. Cancer Cell 40, 1060–1069.e7 (2022).
pubmed: 36099883
pmcid: 10393267
doi: 10.1016/j.ccell.2022.07.005
Boumelha, J. et al. CRISPR–Cas9 screening identifies KRAS-induced COX2 as a driver of immunotherapy resistance in lung cancer. Cancer Res. 84, 2231–2246 (2024).
pubmed: 38635884
pmcid: 11247323
doi: 10.1158/0008-5472.CAN-23-2627
Lacher, S. B. et al. PGE2 limits effector expansion of tumour-infiltrating stem-like CD8
pubmed: 38658748
pmcid: 11078747
doi: 10.1038/s41586-024-07254-x
Pelly, V. S. et al. Anti-inflammatory drugs remodel the tumor immune environment to enhance immune checkpoint blockade efficacy. Cancer Discov. 11, 2602–2619 (2021). Using pharmacological inhibitors, including nonsteroidal anti-inflammatory drugs, this study reveals the importance of the COX2–PGE
pubmed: 34031121
pmcid: 7611767
doi: 10.1158/2159-8290.CD-20-1815
Bonavita, E. et al. Antagonistic inflammatory phenotypes dictate tumor fate and response to immune checkpoint blockade. Immunity 53, 1215–1229.e8 (2020).
pubmed: 33220234
pmcid: 7772804
doi: 10.1016/j.immuni.2020.10.020
Morotti, M. et al. PGE2 inhibits TIL expansion by disrupting IL-2 signalling and mitochondrial function. Nature 629, 426–434 (2024).
pubmed: 38658764
pmcid: 11078736
doi: 10.1038/s41586-024-07352-w
Tauriello, D. V. F., Sancho, E. & Batlle, E. Overcoming TGFβ-mediated immune evasion in cancer. Nat. Rev. Cancer 22, 25–44 (2022).
pubmed: 34671117
doi: 10.1038/s41568-021-00413-6
Bayne, L. J. et al. Tumor-derived granulocyte–macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21, 822–835 (2012).
pubmed: 22698406
pmcid: 3575028
doi: 10.1016/j.ccr.2012.04.025
Yuan, B. et al. Targeting IL-1β as an immunopreventive and therapeutic modality for K-ras-mutant lung cancer. JCI Insight 7, e157788 (2022).
pubmed: 35471938
pmcid: 9220853
doi: 10.1172/jci.insight.157788
Liao, W. et al. KRAS–IRF2 axis drives immune suppression and immune therapy resistance in colorectal cancer. Cancer Cell 35, 559–572.e7 (2019). This study describes another facet to the roles of oncogenic KRAS in the immunoevasive TME, namely, its induction of CXCL3 that programmes and recruits immunosuppressive myeloid cells within tumours.
pubmed: 30905761
pmcid: 6467776
doi: 10.1016/j.ccell.2019.02.008
Pylayeva-Gupta, Y., Lee, K. E., Hajdu, C. H., Miller, G. & Bar-Sagi, D. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 21, 836–847 (2012).
pubmed: 22698407
pmcid: 3721510
doi: 10.1016/j.ccr.2012.04.024
Ying, H. et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149, 656–670 (2012).
pubmed: 22541435
pmcid: 3472002
doi: 10.1016/j.cell.2012.01.058
Zhang, X. et al. The role of tumor metabolic reprogramming in tumor immunity. Int. J. Mol. Sci. 24, 17422 (2023).
pubmed: 38139250
pmcid: 10743965
doi: 10.3390/ijms242417422
De Blander, H. et al. Cooperative pro-tumorigenic adaptation to oncogenic RAS through epithelial-to-mesenchymal plasticity. Sci. Adv. 10, eadi1736 (2024).
pubmed: 38354248
pmcid: 10866563
doi: 10.1126/sciadv.adi1736
Kortlever, R. M. et al. Myc cooperates with Ras by programming inflammation and immune suppression. Cell 171, 1301–1315.e14 (2017). This study reveals a new dimension to the well-known cooperativity of KRAS and MYC in tumorigenesis, namely, the programming of an immunosuppressive TME, involving in part CCL9 and IL-33.
pubmed: 29195074
pmcid: 5720393
doi: 10.1016/j.cell.2017.11.013
Khandjian, E. W., Robert, C. & Davidovic, L. FMRP, a multifunctional RNA-binding protein in quest of a new identity. Front. Genet. 13, 976480 (2022).
pubmed: 36035132
pmcid: 9399724
doi: 10.3389/fgene.2022.976480
Malecki, C., Hambly, B. D., Jeremy, R. W. & Robertson, E. N. The RNA-binding fragile-X mental retardation protein and its role beyond the brain. Biophys. Rev. 12, 903–916 (2020).
pubmed: 32654068
pmcid: 7429658
doi: 10.1007/s12551-020-00730-4
Richter, J. D. & Zhao, X. The molecular biology of FMRP: new insights into fragile X syndrome. Nat. Rev. Neurosci. 22, 209–222 (2021).
pubmed: 33608673
pmcid: 8094212
doi: 10.1038/s41583-021-00432-0
Zeng, Q. et al. Aberrant hyperexpression of the RNA binding protein FMRP in tumors mediates immune evasion. Science 378, eabl7207 (2022). This study reveals, via genetic perturbation in multiple tumour models, the unanticipated role of FMRP as a multifaceted master regulator of the immunosuppressive TME, involving in part IL-33, PROS1 and exosomes.
pubmed: 36395212
doi: 10.1126/science.abl7207
Li, L. et al. GKAP acts as a genetic modulator of NMDAR signaling to govern invasive tumor growth. Cancer Cell 33, 736–751.e5 (2018).
pubmed: 29606348
pmcid: 5896248
doi: 10.1016/j.ccell.2018.02.011
Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).
pubmed: 35022204
doi: 10.1158/2159-8290.CD-21-1059
Debnath, J., Gammoh, N. & Ryan, K. M. Autophagy and autophagy-related pathways in cancer. Nat. Rev. Mol. Cell Biol. 24, 560–575 (2023).
pubmed: 36864290
doi: 10.1038/s41580-023-00585-z
Young, T. M. et al. Autophagy protects tumors from T cell-mediated cytotoxicity via inhibition of TNFα-induced apoptosis. Sci. Immunol. 5, eabb9561 (2020).
pubmed: 33443027
doi: 10.1126/sciimmunol.abb9561
Li, Z.-L. et al. Autophagy deficiency promotes triple-negative breast cancer resistance to T cell-mediated cytotoxicity by blocking tenascin-C degradation. Nat. Commun. 11, 3806 (2020).
pubmed: 32732922
pmcid: 7393512
doi: 10.1038/s41467-020-17395-y
Chryplewicz, A. et al. Cancer cell autophagy, reprogrammed macrophages, and remodeled vasculature in glioblastoma triggers tumor immunity. Cancer Cell 40, 1111–1127.e9 (2022).
pubmed: 36113478
pmcid: 9580613
doi: 10.1016/j.ccell.2022.08.014
Chaib, S. et al. The efficacy of chemotherapy is limited by intratumoral senescent cells expressing PD-L2. Nat. Cancer 5, 448–462 (2024).
pubmed: 38267628
pmcid: 10965441
doi: 10.1038/s43018-023-00712-x
Eggert, T. et al. Distinct functions of senescence-associated immune responses in liver tumor surveillance and tumor progression. Cancer Cell 30, 533–547 (2016). This study describes dichotomous roles of cancer cell senescence in liver cancer, in particular, the involvement of senescent cancer cells in suppressing NK cell-mediated killing.
pubmed: 27728804
pmcid: 7789819
doi: 10.1016/j.ccell.2016.09.003
Matsuda, S. et al. TGF-β in the microenvironment induces a physiologically occurring immune-suppressive senescent state. Cell Rep. 42, 112129 (2023). This study implicates hypoxia-induced TGFβ in driving the senescence of cancer cells, whose SASP recruits immunosuppressive immune cells, promoting immune evasion.
pubmed: 36821441
pmcid: 10187541
doi: 10.1016/j.celrep.2023.112129
Marzban, H. et al. Immunobiology of cancer stem cells and their immunoevasion mechanisms. Mol. Biol. Rep. 50, 9559–9573 (2023).
pubmed: 37776412
doi: 10.1007/s11033-023-08768-9
Li, L. & Jensen, R. A. Understanding and overcoming immunosuppression shaped by cancer stem cells. Cancer Res. 83, 2096–2104 (2023).
pubmed: 37403628
pmcid: 10320482
doi: 10.1158/0008-5472.CAN-23-0230
Miao, Y. et al. Adaptive immune resistance emerges from tumor-initiating stem cells. Cell 177, 1172–1186.e14 (2019).
pubmed: 31031009
pmcid: 6525024
doi: 10.1016/j.cell.2019.03.025
Luan, J. et al. CD80 on skin stem cells promotes local expansion of regulatory T cells upon injury to orchestrate repair within an inflammatory environment. Immunity 57, 1071–1086.e7 (2024).
pubmed: 38677291
doi: 10.1016/j.immuni.2024.04.003
Erickson, H. L. et al. Cancer stem cells release interleukin-33 within large oncosomes to promote immunosuppressive differentiation of macrophage precursors. Immunity 57, 1908–1922.e6 (2024).
pubmed: 39079535
doi: 10.1016/j.immuni.2024.07.004
Baldominos, P. et al. Quiescent cancer cells resist T cell attack by forming an immunosuppressive niche. Cell 185, 1694–1708.e19 (2022).
pubmed: 35447074
pmcid: 11332067
doi: 10.1016/j.cell.2022.03.033
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).
pubmed: 21376230
doi: 10.1016/j.cell.2011.02.013
Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).
pubmed: 10647931
doi: 10.1016/S0092-8674(00)81683-9
De Palma, M. & Hanahan, D. Milestones in tumor vascularization and its therapeutic targeting. Nat. Cancer 5, 827–843 (2024).
pubmed: 38918437
doi: 10.1038/s43018-024-00780-7
Onrust, S. V., Hartl, P. M., Rosen, S. D. & Hanahan, D. Modulation of L-selectin ligand expression during an immune response accompanying tumorigenesis in transgenic mice. J. Clin. Invest. 97, 54–64 (1996). This study provides an early description of the development of the immunosuppressive TME in a genetically engineered mouse model of pancreatic neuroendocrine tumorigenesis, comparing inflamed pre-malignant lesions with uninflamed malignant tumours that lack HEVs.
pubmed: 8550850
pmcid: 507062
doi: 10.1172/JCI118406
Allen, E. et al. Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci. Transl. Med. 9, eaak9679 (2017). This study shows that the angiogenic tumour vasculature can be reprogrammed and quasi-normalized by VEGF pathway inhibitors to enable the induction of HEVs and productive antitumour immunity.
pubmed: 28404866
pmcid: 5554432
doi: 10.1126/scitranslmed.aak9679
Hosaka, K. et al. KRAS mutation-driven angiopoietin 2 bestows anti-VEGF resistance in epithelial carcinomas. Proc. Natl Acad. Sci. USA 120, e2303740120 (2023).
pubmed: 37428914
pmcid: 10629547
doi: 10.1073/pnas.2303740120
Barleon, B. et al. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87, 3336–3343 (1996).
pubmed: 8605350
doi: 10.1182/blood.V87.8.3336.bloodjournal8783336
Scholz, A. et al. Angiopoietin-2 promotes myeloid cell infiltration in a β
pubmed: 21868579
doi: 10.1182/blood-2011-03-343293
Kashyap, A. S. et al. Optimized antiangiogenic reprogramming of the tumor microenvironment potentiates CD40 immunotherapy. Proc. Natl Acad. Sci. USA 117, 541–551 (2020). This study illustrates the immunological benefits of co-targeting VEGF and ANG2 signalling in the tumour vasculature, including the reprogramming of TAMs and the restoration of functionality in TADCs.
pubmed: 31889004
doi: 10.1073/pnas.1902145116
Schmittnaegel, M. et al. Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade. Sci. Transl. Med. 9, eaak9670 (2017). Functional validation with a bispecific blocking antibody shows the benefits of co-targeting VEGF and ANG2 signalling in the angiogenic vasculature across multiple mouse models of cancer, facilitating T cell extravasation and enhancing antitumour immunity.
pubmed: 28404865
doi: 10.1126/scitranslmed.aak9670
Amersfoort, J., Eelen, G. & Carmeliet, P. Immunomodulation by endothelial cells — partnering up with the immune system? Nat. Rev. Immunol. 22, 576–588 (2022).
pubmed: 35288707
pmcid: 8920067
doi: 10.1038/s41577-022-00694-4
Vella, G., Hua, Y. & Bergers, G. High endothelial venules in cancer: regulation, function, and therapeutic implication. Cancer Cell 41, 527–545 (2023).
pubmed: 36827979
doi: 10.1016/j.ccell.2023.02.002
Huinen, Z. R., Huijbers, E. J. M., van Beijnum, J. R., Nowak-Sliwinska, P. & Griffioen, A. W. Anti-angiogenic agents — overcoming tumour endothelial cell anergy and improving immunotherapy outcomes. Nat. Rev. Clin. Oncol. 18, 527–540 (2021).
pubmed: 33833434
doi: 10.1038/s41571-021-00496-y
Verhoeven, J. et al. Tumor endothelial cell autophagy is a key vascular-immune checkpoint in melanoma. EMBO Mol. Med. 15, e18028 (2023).
pubmed: 38009521
pmcid: 10701618
doi: 10.15252/emmm.202318028
Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012).
pubmed: 22439926
doi: 10.1016/j.ccr.2012.02.022
Viúdez-Pareja, C., Kreft, E. & García-Caballero, M. Immunomodulatory properties of the lymphatic endothelium in the tumor microenvironment. Front. Immunol. 14, 1235812 (2023).
pubmed: 37744339
pmcid: 10512957
doi: 10.3389/fimmu.2023.1235812
Karakousi, T., Mudianto, T. & Lund, A. W. Lymphatic vessels in the age of cancer immunotherapy. Nat. Rev. Cancer 24, 363–381 (2024).
pubmed: 38605228
doi: 10.1038/s41568-024-00681-y
Kataru, R. P. et al. Tumor lymphatic function regulates tumor inflammatory and immunosuppressive microenvironments. Cancer Immunol. Res. 7, 1345–1358 (2019).
pubmed: 31186247
pmcid: 6677612
doi: 10.1158/2326-6066.CIR-18-0337
Lund, A. W. et al. Lymphatic vessels regulate immune microenvironments in human and murine melanoma. J. Clin. Invest. 126, 3389–3402 (2016).
pubmed: 27525437
pmcid: 5004967
doi: 10.1172/JCI79434
Dieterich, L. C. et al. Tumor-associated lymphatic vessels upregulate PDL1 to inhibit T-cell activation. Front. Immunol. 8, 66 (2017).
pubmed: 28217128
pmcid: 5289955
doi: 10.3389/fimmu.2017.00066
Dabravolski, S. A. et al. The role of pericytes in regulation of innate and adaptive immunity. Biomedicines 11, 600 (2023).
pubmed: 36831136
pmcid: 9953719
doi: 10.3390/biomedicines11020600
Valdor, R. et al. Glioblastoma progression is assisted by induction of immunosuppressive function of pericytes through interaction with tumor cells. Oncotarget 8, 68614–68626 (2017).
pubmed: 28978142
pmcid: 5620282
doi: 10.18632/oncotarget.19804
Valdor, R. et al. Glioblastoma ablates pericytes antitumor immune function through aberrant up-regulation of chaperone-mediated autophagy. Proc. Natl Acad. Sci. USA 116, 20655–20665 (2019). This is an intriguing study, yet to be generalized, that describes an immunosuppressive programme induced in pericytes in glioblastoma.
pubmed: 31548426
pmcid: 6789971
doi: 10.1073/pnas.1903542116
Braun, S. et al. Pericytes orchestrate a tumor-restraining microenvironment in glioblastoma. Preprint at bioRxiv https://doi.org/10.1101/2024.08.26.609765 (2024).
Kim, I., Choi, S., Yoo, S., Lee, M. & Kim, I.-S. Cancer-associated fibroblasts in the hypoxic tumor microenvironment. Cancers 14, 3321 (2022).
pubmed: 35884382
pmcid: 9320406
doi: 10.3390/cancers14143321
Kennel, K. B., Bozlar, M., De Valk, A. F. & Greten, F. R. Cancer-associated fibroblasts in inflammation and antitumor immunity. Clin. Cancer Res. 29, 1009–1016 (2023).
pubmed: 36399325
doi: 10.1158/1078-0432.CCR-22-1031
Cords, L. et al. Cancer-associated fibroblast phenotypes are associated with patient outcome in non-small cell lung cancer. Cancer Cell 42, 396–412.e5 (2024).
pubmed: 38242124
pmcid: 10929690
doi: 10.1016/j.ccell.2023.12.021
Luo, H. et al. Pan-cancer single-cell analysis reveals the heterogeneity and plasticity of cancer-associated fibroblasts in the tumor microenvironment. Nat. Commun. 13, 6619 (2022). This study uses single-cell RNA sequencing to characterize CAF subtypes, cell states and phenotypic plasticity across ten cancer types.
pubmed: 36333338
pmcid: 9636408
doi: 10.1038/s41467-022-34395-2
Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).
pubmed: 31980749
pmcid: 7046529
doi: 10.1038/s41568-019-0238-1
Croizer, H. et al. Deciphering the spatial landscape and plasticity of immunosuppressive fibroblasts in breast cancer. Nat. Commun. 15, 2806 (2024).
pubmed: 38561380
pmcid: 10984943
doi: 10.1038/s41467-024-47068-z
Öhlund, D. et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 214, 579–596 (2017). This study delineates CAF subtypes and phenotypes in mouse and human PDAC.
pubmed: 28232471
pmcid: 5339682
doi: 10.1084/jem.20162024
Elyada, E. et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9, 1102–1123 (2019).
pubmed: 31197017
pmcid: 6727976
doi: 10.1158/2159-8290.CD-19-0094
Bartoschek, M. et al. Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nat. Commun. 9, 5150 (2018).
pubmed: 30514914
pmcid: 6279758
doi: 10.1038/s41467-018-07582-3
Milosevic, V. & Östman, A. Interactions between cancer-associated fibroblasts and T-cells: functional crosstalk with targeting and biomarker potential. Ups J. Med. Sci. 129, e10710 (2024).
doi: 10.48101/ujms.v129.10710
Yang, D., Liu, J., Qian, H. & Zhuang, Q. Cancer-associated fibroblasts: from basic science to anticancer therapy. Exp. Mol. Med. 55, 1322–1332 (2023).
pubmed: 37394578
pmcid: 10394065
doi: 10.1038/s12276-023-01013-0
Dominguez, C. X. et al. Single-cell RNA sequencing reveals stromal evolution into LRRC15
pubmed: 31699795
doi: 10.1158/2159-8290.CD-19-0644
Kieffer, Y. et al. Single-cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer. Cancer Discov. 10, 1330–1351 (2020).
pubmed: 32434947
doi: 10.1158/2159-8290.CD-19-1384
Krishnamurty, A. T. et al. LRRC15
pubmed: 36171287
pmcid: 9630141
doi: 10.1038/s41586-022-05272-1
Belle, J. I. et al. Senescence defines a distinct subset of myofibroblasts that orchestrates immunosuppression in pancreatic cancer. Cancer Discov. 14, 1324–1355 (2024). This study describes and functionally validates senescent myCAFs as potent instigators of T cell immunosuppression in a mouse model of pancreatic cancer, with evidence of their presence in human tumours as well.
pubmed: 38683144
doi: 10.1158/2159-8290.CD-23-0428
Kuczek, D. E. et al. Collagen density regulates the activity of tumor-infiltrating T cells. J. Immunother. Cancer 7, 68 (2019).
pubmed: 30867051
pmcid: 6417085
doi: 10.1186/s40425-019-0556-6
Caligiuri, G. & Tuveson, D. A. Activated fibroblasts in cancer: perspectives and challenges. Cancer Cell 41, 434–449 (2023).
pubmed: 36917949
pmcid: 11022589
doi: 10.1016/j.ccell.2023.02.015
Gao, H. et al. 3D extracellular matrix regulates the activity of T cells and cancer associated fibroblasts in breast cancer. Front. Oncol. 11, 764204 (2021). This study demonstrates how elevated ECM density enhances CAF abundance and activity while reducing T cell infiltration in mouse models of breast cancer, with similar associations observed in human breast cancer.
pubmed: 34956886
pmcid: 8699235
doi: 10.3389/fonc.2021.764204
Tharp, K. M. et al. Tumor-associated macrophages restrict CD8
pubmed: 38831058
doi: 10.1038/s43018-024-00775-4
Tran, L. L., Dang, T., Thomas, R. & Rowley, D. R. ELF3 mediates IL-1α induced differentiation of mesenchymal stem cells to inflammatory iCAFs. Stem Cell 39, 1766–1777 (2021).
doi: 10.1002/stem.3455
Li, T. et al. Hepatocellular carcinoma-associated fibroblasts trigger NK cell dysfunction via PGE2 and IDO. Cancer Lett. 318, 154–161 (2012).
pubmed: 22182446
doi: 10.1016/j.canlet.2011.12.020
Gok Yavuz, B. et al. Cancer associated fibroblasts sculpt tumour microenvironment by recruiting monocytes and inducing immunosuppressive PD-1
pubmed: 30816272
pmcid: 6395633
doi: 10.1038/s41598-019-39553-z
Biffi, G. et al. IL1-Induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov. 9, 282–301 (2019).
pubmed: 30366930
doi: 10.1158/2159-8290.CD-18-0710
Chen, H. et al. Integrated analysis revealed an inflammatory cancer-associated fibroblast-based subtypes with promising implications in predicting the prognosis and immunotherapeutic response of bladder cancer patients. Int. J. Mol. Sci. 23, 15970 (2022).
pubmed: 36555612
pmcid: 9781727
doi: 10.3390/ijms232415970
Nicolas, A. M. et al. Inflammatory fibroblasts mediate resistance to neoadjuvant therapy in rectal cancer. Cancer Cell 40, 168–184.e13 (2022).
pubmed: 35120600
doi: 10.1016/j.ccell.2022.01.004
Cassetta, L. & Pollard, J. W. A timeline of tumour-associated macrophage biology. Nat. Rev. Cancer 23, 238–257 (2023).
pubmed: 36792751
doi: 10.1038/s41568-022-00547-1
Kloosterman, D. J. & Akkari, L. Macrophages at the interface of the co-evolving cancer ecosystem. Cell 186, 1627–1651 (2023).
pubmed: 36924769
doi: 10.1016/j.cell.2023.02.020
Engblom, C., Pfirschke, C. & Pittet, M. J. The role of myeloid cells in cancer therapies. Nat. Rev. Cancer 16, 447–462 (2016).
pubmed: 27339708
doi: 10.1038/nrc.2016.54
Steidl, C. et al. Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N. Engl. J. Med. 362, 875–885 (2010).
pubmed: 20220182
pmcid: 2897174
doi: 10.1056/NEJMoa0905680
Zhang, Q. et al. Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLoS ONE 7, e50946 (2012).
pubmed: 23284651
pmcid: 3532403
doi: 10.1371/journal.pone.0050946
Gentles, A. J. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 938–945 (2015).
pubmed: 26193342
pmcid: 4852857
doi: 10.1038/nm.3909
Engblom, C. et al. Osteoblasts remotely supply lung tumors with cancer-promoting SiglecF
pubmed: 29191879
pmcid: 6343476
doi: 10.1126/science.aal5081
Mitchem, J. B. et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 73, 1128–1141 (2013).
pubmed: 23221383
doi: 10.1158/0008-5472.CAN-12-2731
Kersten, K. et al. Spatiotemporal co-dependency between macrophages and exhausted CD8
pubmed: 35623342
pmcid: 9197962
doi: 10.1016/j.ccell.2022.05.004
Deng, Z. et al. The nuclear factor ID3 endows macrophages with a potent anti-tumour activity. Nature 626, 864–873 (2024).
pubmed: 38326607
pmcid: 10881399
doi: 10.1038/s41586-023-06950-4
Pucci, F. et al. SCS macrophages suppress melanoma by restricting tumor-derived vesicle-B cell interactions. Science 352, 242–246 (2016).
pubmed: 26989197
pmcid: 4960636
doi: 10.1126/science.aaf1328
Nalio Ramos, R. et al. Tissue-resident FOLR2
pubmed: 35325594
doi: 10.1016/j.cell.2022.02.021
Hirschhorn, D. et al. T cell immunotherapies engage neutrophils to eliminate tumor antigen escape variants. Cell 186, 1432–1447.e17 (2023).
pubmed: 37001503
pmcid: 10994488
doi: 10.1016/j.cell.2023.03.007
Gungabeesoon, J. et al. A neutrophil response linked to tumor control in immunotherapy. Cell 186, 1448–1464.e20 (2023).
pubmed: 37001504
pmcid: 10132778
doi: 10.1016/j.cell.2023.02.032
Benguigui, M. et al. Interferon-stimulated neutrophils as a predictor of immunotherapy response. Cancer Cell 42, 253–265.e12 (2024).
pubmed: 38181798
pmcid: 10864002
doi: 10.1016/j.ccell.2023.12.005
Quail, D. F. et al. Neutrophil phenotypes and functions in cancer: a consensus statement. J. Exp. Med. 219, e20220011 (2022).
pubmed: 35522219
pmcid: 9086501
doi: 10.1084/jem.20220011
Pittet, M. J., Michielin, O. & Migliorini, D. Clinical relevance of tumour-associated macrophages. Nat. Rev. Clin. Oncol. 19, 402–421 (2022).
pubmed: 35354979
doi: 10.1038/s41571-022-00620-6
Pittet, M. J., Di Pilato, M., Garris, C. & Mempel, T. R. Dendritic cells as shepherds of T cell immunity in cancer. Immunity 56, 2218–2230 (2023).
pubmed: 37708889
pmcid: 10591862
doi: 10.1016/j.immuni.2023.08.014
Broz, M. L. et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 26, 638–652 (2014).
pubmed: 25446897
pmcid: 4254577
doi: 10.1016/j.ccell.2014.09.007
Spranger, S., Bao, R. & Gajewski, T. F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523, 231–235 (2015). This seminal work shows how a genetic alteration in cancer cells prevents the accumulation of TADCs.
pubmed: 25970248
doi: 10.1038/nature14404
Zilionis, R. et al. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity 50, 1317–1334.e10 (2019).
pubmed: 30979687
pmcid: 6620049
doi: 10.1016/j.immuni.2019.03.009
MacNabb, B. W. et al. Dendritic cells can prime anti-tumor CD8
pubmed: 35617964
pmcid: 9883788
doi: 10.1016/j.immuni.2022.04.016
Garris, C. S. et al. Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity 49, 1148–1161.e7 (2018).
pubmed: 30552023
pmcid: 6301092
doi: 10.1016/j.immuni.2018.09.024
Di Pilato, M. et al. CXCR6 positions cytotoxic T cells to receive critical survival signals in the tumor microenvironment. Cell 184, 4512–4530.e22 (2021).
pubmed: 34343496
pmcid: 8719451
doi: 10.1016/j.cell.2021.07.015
Klemm, F. et al. Compensatory CSF2-driven macrophage activation promotes adaptive resistance to CSF1R inhibition in breast-to-brain metastasis. Nat. Cancer 2, 1086–1101 (2021).
pubmed: 35121879
doi: 10.1038/s43018-021-00254-0
Pyonteck, S. M. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 19, 1264–1272 (2013).
pubmed: 24056773
pmcid: 3840724
doi: 10.1038/nm.3337
Neubert, N. J. et al. T cell-induced CSF1 promotes melanoma resistance to PD1 blockade. Sci. Transl. Med. 10, eaan3311 (2018). This work shows that CD8
pubmed: 29643229
pmcid: 5957531
doi: 10.1126/scitranslmed.aan3311
Cortez-Retamozo, V. et al. Angiotensin II drives the production of tumor-promoting macrophages. Immunity 38, 296–308 (2013).
pubmed: 23333075
pmcid: 3582771
doi: 10.1016/j.immuni.2012.10.015
Di Conza, G. et al. Tumor-induced reshuffling of lipid composition on the endoplasmic reticulum membrane sustains macrophage survival and pro-tumorigenic activity. Nat. Immunol. 22, 1403–1415 (2021).
pubmed: 34686867
pmcid: 7611917
doi: 10.1038/s41590-021-01047-4
Zhang, B. et al. B cell-derived GABA elicits IL-10
pubmed: 34732892
pmcid: 8599023
doi: 10.1038/s41586-021-04082-1
Zhang, D. et al. Metabolic regulation of gene expression by histone lactylation. Nature 574, 575–580 (2019).
pubmed: 31645732
pmcid: 6818755
doi: 10.1038/s41586-019-1678-1
Colegio, O. R. et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559–563 (2014).
pubmed: 25043024
pmcid: 4301845
doi: 10.1038/nature13490
Park, E. J. et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140, 197–208 (2010).
pubmed: 20141834
pmcid: 2836922
doi: 10.1016/j.cell.2009.12.052
Caronni, N. et al. IL-1β
pubmed: 37914939
doi: 10.1038/s41586-023-06685-2
Wu, J.-Y. et al. Cancer-derived succinate promotes macrophage polarization and cancer metastasis via succinate receptor. Mol. Cell 77, 213–227.e5 (2020).
pubmed: 31735641
doi: 10.1016/j.molcel.2019.10.023
Bill, R. et al. CXCL9:SPP1 macrophage polarity identifies a network of cellular programs that control human cancers. Science 381, 515–524 (2023). This work reveals that the polarity of TAMs, as defined by the expression of CXCL9 and SPP1, is a critical feature of TMEs and is tightly linked to T cell activity.
pubmed: 37535729
pmcid: 10755760
doi: 10.1126/science.ade2292
Bader, J. E. et al. Obesity induces PD-1 on macrophages to suppress anti-tumour immunity. Nature 630, 968–975 (2024).
pubmed: 38867043
doi: 10.1038/s41586-024-07529-3
Wang, X. et al. In vivo CRISPR screens identify the E3 ligase Cop1 as a modulator of macrophage infiltration and cancer immunotherapy target. Cell 184, 5357–5374.e22 (2021).
pubmed: 34582788
pmcid: 9136996
doi: 10.1016/j.cell.2021.09.006
Guan, W. et al. Tumor-associated macrophage promotes the survival of cancer cells upon docetaxel chemotherapy via the CSF1/CSF1R-CXCL12/CXCR4 axis in castration-resistant prostate cancer. Genes 12, 773 (2021).
pubmed: 34069563
pmcid: 8161256
doi: 10.3390/genes12050773
DeNardo, D. G. et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 1, 54–67 (2011).
pubmed: 22039576
pmcid: 3203524
doi: 10.1158/2159-8274.CD-10-0028
Hughes, R. et al. Perivascular M2 macrophages stimulate tumor relapse after chemotherapy. Cancer Res. 75, 3479–3491 (2015).
pubmed: 26269531
pmcid: 5024531
doi: 10.1158/0008-5472.CAN-14-3587
Walens, A. et al. CCL5 promotes breast cancer recurrence through macrophage recruitment in residual tumors. eLife 8, e43653 (2019).
pubmed: 30990165
pmcid: 6478432
doi: 10.7554/eLife.43653
Mantovani, A., Allavena, P., Marchesi, F. & Garlanda, C. Macrophages as tools and targets in cancer therapy. Nat. Rev. Drug Discov. 21, 799–820 (2022).
pubmed: 35974096
pmcid: 9380983
doi: 10.1038/s41573-022-00520-5
Tichet, M. et al. Bispecific PD1-IL2v and anti-PD-L1 break tumor immunity resistance by enhancing stem-like tumor-reactive CD8
pubmed: 36630914
doi: 10.1016/j.immuni.2022.12.006
Kuang, D.-M. et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J. Exp. Med. 206, 1327–1337 (2009).
pubmed: 19451266
pmcid: 2715058
doi: 10.1084/jem.20082173
Chang, C.-H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015).
pubmed: 26321679
pmcid: 4864363
doi: 10.1016/j.cell.2015.08.016
Pfirschke, C. et al. Macrophage-targeted therapy unlocks antitumoral cross-talk between IFNγ-secreting lymphocytes and IL12-producing dendritic cells. Cancer Immunol. Res. 10, 40–55 (2022).
pubmed: 34795032
doi: 10.1158/2326-6066.CIR-21-0326
Ruffell, B. et al. Macrophage IL-10 blocks CD8
pubmed: 25446896
pmcid: 4254570
doi: 10.1016/j.ccell.2014.09.006
Matusiak, M. et al. Spatially segregated macrophage populations predict distinct outcomes in colon cancer. Cancer Discov. 14, 1418–1439 (2024).
pubmed: 38552005
pmcid: 11294822
doi: 10.1158/2159-8290.CD-23-1300
Bianchi, A. et al. Cell-autonomous Cxcl1 sustains tolerogenic circuitries and stromal inflammation via neutrophil-derived TNF in pancreatic cancer. Cancer Discov. 13, 1428–1453 (2023).
pubmed: 36946782
pmcid: 10259764
doi: 10.1158/2159-8290.CD-22-1046
Wellenstein, M. D. et al. Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis. Nature 572, 538–542 (2019).
pubmed: 31367040
pmcid: 6707815
doi: 10.1038/s41586-019-1450-6
Gong, Z. et al. Immunosuppressive reprogramming of neutrophils by lung mesenchymal cells promotes breast cancer metastasis. Sci. Immunol. 8, eadd5204 (2023).
pubmed: 36800412
pmcid: 10067025
doi: 10.1126/sciimmunol.add5204
Zhao, J. et al. Tumor-specific neutrophils originating from meninges promote glioblastoma. Preprint at bioRxiv https://doi.org/10.1101/2023.05.23.542010 (2023).
Simoncello, F. et al. CXCL5-mediated accumulation of mature neutrophils in lung cancer tissues impairs the differentiation program of anticancer CD8 T cells and limits the efficacy of checkpoint inhibitors. Oncoimmunology 11, 2059876 (2022).
pubmed: 35402081
pmcid: 8993093
doi: 10.1080/2162402X.2022.2059876
Sanmamed, M. F. et al. Serum interleukin-8 reflects tumor burden and treatment response across malignancies of multiple tissue origins. Clin. Cancer Res. 20, 5697–5707 (2014).
pubmed: 25224278
doi: 10.1158/1078-0432.CCR-13-3203
Alfaro, C. et al. Tumor-produced interleukin-8 attracts human myeloid-derived suppressor cells and elicits extrusion of neutrophil extracellular traps (NETs). Clin. Cancer Res. 22, 3924–3936 (2016).
pubmed: 26957562
doi: 10.1158/1078-0432.CCR-15-2463
Steele, C. W. et al. CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell 29, 832–845 (2016).
pubmed: 27265504
pmcid: 4912354
doi: 10.1016/j.ccell.2016.04.014
Guo, C. et al. Targeting myeloid chemotaxis to reverse prostate cancer therapy resistance. Nature 623, 1053–1061 (2023). This work shows that inhibiting CXCR2 in patients with prostate cancer not only limits neutrophil accumulation in tumours but also has therapeutic effects.
pubmed: 37844613
pmcid: 10686834
doi: 10.1038/s41586-023-06696-z
Bezzi, M. et al. Diverse genetic-driven immune landscapes dictate tumor progression through distinct mechanisms. Nat. Med. 24, 165–175 (2018).
pubmed: 29309058
doi: 10.1038/nm.4463
Bodac, A. et al. Bcl-xL targeting eliminates ageing tumor-promoting neutrophils and inhibits lung tumor growth. EMBO Mol. Med. 16, 158–184 (2024).
pubmed: 38177532
doi: 10.1038/s44321-023-00013-x
Kowanetz, M. et al. Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G
pubmed: 21081700
pmcid: 3003076
doi: 10.1073/pnas.1015855107
Bronte, V. et al. Unopposed production of granulocyte–macrophage colony-stimulating factor by tumors inhibits CD8
pubmed: 10229805
doi: 10.4049/jimmunol.162.10.5728
Kohanbash, G. et al. GM-CSF promotes the immunosuppressive activity of glioma-infiltrating myeloid cells through interleukin-4 receptor-α. Cancer Res. 73, 6413–6423 (2013).
pubmed: 24030977
doi: 10.1158/0008-5472.CAN-12-4124
Fridlender, Z. G. et al. Polarization of tumor-associated neutrophil phenotype by TGF-β: ‘N1’ versus ‘N2’ TAN. Cancer Cell 16, 183–194 (2009).
pubmed: 19732719
pmcid: 2754404
doi: 10.1016/j.ccr.2009.06.017
Coffelt, S. B. et al. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522, 345–348 (2015). This work shows that tumours can promote metastasis through a systemic inflammatory cascade involving neutrophils that suppress antitumour CD8
pubmed: 25822788
pmcid: 4475637
doi: 10.1038/nature14282
Maas, R. R. et al. The local microenvironment drives activation of neutrophils in human brain tumors. Cell 186, 4546–4566.e27 (2023).
pubmed: 37769657
doi: 10.1016/j.cell.2023.08.043
Bell, C. R. et al. Chemotherapy-induced COX-2 upregulation by cancer cells defines their inflammatory properties and limits the efficacy of chemoimmunotherapy combinations. Nat. Commun. 13, 2063 (2022).
pubmed: 35440553
pmcid: 9018752
doi: 10.1038/s41467-022-29606-9
Bancaro, N. et al. Apolipoprotein E induces pathogenic senescent-like myeloid cells in prostate cancer. Cancer Cell 41, 602–619.e11 (2023).
pubmed: 36868226
doi: 10.1016/j.ccell.2023.02.004
McDowell, S. A. C. et al. Neutrophil oxidative stress mediates obesity-associated vascular dysfunction and metastatic transmigration. Nat. Cancer 2, 545–562 (2021).
pubmed: 35122017
doi: 10.1038/s43018-021-00194-9
Tohme, S. et al. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res. 76, 1367–1380 (2016).
pubmed: 26759232
pmcid: 4794393
doi: 10.1158/0008-5472.CAN-15-1591
Albrengues, J. et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 361, eaao4227 (2018).
pubmed: 30262472
pmcid: 6777850
doi: 10.1126/science.aao4227
Wculek, S. K. & Malanchi, I. Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature 528, 413–417 (2015).
pubmed: 26649828
pmcid: 4700594
doi: 10.1038/nature16140
Enfield, K. S. S. et al. Spatial architecture of myeloid and T cells orchestrates immune evasion and clinical outcome in lung cancer. Cancer Discov. 14, 1018–1047 (2024).
pubmed: 38581685
pmcid: 11145179
doi: 10.1158/2159-8290.CD-23-1380
Siwicki, M. & Pittet, M. J. Versatile neutrophil functions in cancer. Semin. Immunol. 57, 101538 (2021).
pubmed: 34876331
doi: 10.1016/j.smim.2021.101538
Kim, R. et al. Ferroptosis of tumour neutrophils causes immune suppression in cancer. Nature 612, 338–346 (2022). This work shows that ferroptosis in neutrophils suppresses antitumour immunity.
pubmed: 36385526
pmcid: 9875862
doi: 10.1038/s41586-022-05443-0
Mousset, A. et al. Neutrophil extracellular traps formed during chemotherapy confer treatment resistance via TGF-β activation. Cancer Cell 41, 757–775.e10 (2023).
pubmed: 37037615
pmcid: 10228050
doi: 10.1016/j.ccell.2023.03.008
He, X.-Y. et al. Chronic stress increases metastasis via neutrophil-mediated changes to the microenvironment. Cancer Cell 42, 474–486.e12 (2024).
pubmed: 38402610
doi: 10.1016/j.ccell.2024.01.013
Nozawa, H., Chiu, C. & Hanahan, D. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc. Natl Acad. Sci. USA 103, 12493–12498 (2006).
pubmed: 16891410
pmcid: 1531646
doi: 10.1073/pnas.0601807103
Vijver, S. V. et al. Collagen fragments produced in cancer mediate T cell suppression through leukocyte-associated immunoglobulin-like receptor 1. Front. Immunol. 12, 733561 (2021).
pubmed: 34691040
pmcid: 8529287
doi: 10.3389/fimmu.2021.733561
Maier, B. et al. A conserved dendritic-cell regulatory program limits antitumour immunity. Nature 580, 257–262 (2020). This work shows that a population of TADCs involved in antitumour T cell immunity can be suppressed by IL-4 signalling.
pubmed: 32269339
pmcid: 7787191
doi: 10.1038/s41586-020-2134-y
Kim, S. et al. IL-6 selectively suppresses cDC1 specification via C/EBPβ. J. Exp. Med. 220, e20221757 (2023).
pubmed: 37432392
pmcid: 10336151
doi: 10.1084/jem.20221757
Kobie, J. J. et al. Transforming growth factor β inhibits the antigen-presenting functions and antitumor activity of dendritic cell vaccines. Cancer Res. 63, 1860–1864 (2003).
pubmed: 12702574
Osada, T. et al. The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunol. Immunother. 57, 1115–1124 (2008).
pubmed: 18193223
pmcid: 4110970
doi: 10.1007/s00262-007-0441-x
Bayerl, F. et al. Tumor-derived prostaglandin E2 programs cDC1 dysfunction to impair intratumoral orchestration of anti-cancer T cell responses. Immunity 56, 1341–1358.e11 (2023). This work shows how PGE
pubmed: 37315536
doi: 10.1016/j.immuni.2023.05.011
Veglia, F. et al. Lipid bodies containing oxidatively truncated lipids block antigen cross-presentation by dendritic cells in cancer. Nat. Commun. 8, 2122 (2017).
pubmed: 29242535
pmcid: 5730553
doi: 10.1038/s41467-017-02186-9
Cubillos-Ruiz, J. R. et al. ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic. Cell Homeost. Cell 161, 1527–1538 (2015).
Laumont, C. M., Banville, A. C., Gilardi, M., Hollern, D. P. & Nelson, B. H. Tumour-infiltrating B cells: immunological mechanisms, clinical impact and therapeutic opportunities. Nat. Rev. Cancer 22, 414–430 (2022).
pubmed: 35393541
pmcid: 9678336
doi: 10.1038/s41568-022-00466-1
Bruni, D., Angell, H. K. & Galon, J. The immune contexture and immunoscore in cancer prognosis and therapeutic efficacy. Nat. Rev. Cancer 20, 662–680 (2020).
pubmed: 32753728
doi: 10.1038/s41568-020-0285-7
Cabrita, R. et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 577, 561–565 (2020).
pubmed: 31942071
doi: 10.1038/s41586-019-1914-8
Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549–555 (2020).
pubmed: 31942075
pmcid: 8762581
doi: 10.1038/s41586-019-1922-8
Petitprez, F. et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature 577, 556–560 (2020).
pubmed: 31942077
doi: 10.1038/s41586-019-1906-8
Shimizu, J., Yamazaki, S. & Sakaguchi, S. Induction of tumor immunity by removing CD25
pubmed: 10553041
doi: 10.4049/jimmunol.163.10.5211
Onizuka, S. et al. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor α) monoclonal antibody. Cancer Res. 59, 3128–3133 (1999).
pubmed: 10397255
Mizoguchi, A., Mizoguchi, E., Takedatsu, H., Blumberg, R. S. & Bhan, A. K. Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity 16, 219–230 (2002).
pubmed: 11869683
doi: 10.1016/S1074-7613(02)00274-1
Togashi, Y., Shitara, K. & Nishikawa, H. Regulatory T cells in cancer immunosuppression — implications for anticancer therapy. Nat. Rev. Clin. Oncol. 16, 356–371 (2019).
pubmed: 30705439
doi: 10.1038/s41571-019-0175-7
Holmgaard, R. B. et al. Tumor-expressed IDO recruits and activates MDSCs in a T
pubmed: 26411680
pmcid: 5013825
doi: 10.1016/j.celrep.2015.08.077
Chow, M. T. et al. Intratumoral activity of the CXCR3 chemokine system is required for the efficacy of anti-PD-1 therapy. Immunity 50, 1498–1512.e5 (2019).
pubmed: 31097342
pmcid: 6527362
doi: 10.1016/j.immuni.2019.04.010
Moreno Ayala, M. A. et al. CXCR3 expression in regulatory T cells drives interactions with type I dendritic cells in tumors to restrict CD8
pubmed: 37392735
doi: 10.1016/j.immuni.2023.06.003
Spranger, S. et al. Up-regulation of PD-L1, IDO, and T
pubmed: 23986400
pmcid: 4136707
doi: 10.1126/scitranslmed.3006504
Martinez-Usatorre, A. et al. Overcoming microenvironmental resistance to PD-1 blockade in genetically engineered lung cancer models. Sci. Transl. Med. 13, eabd1616 (2021).
pubmed: 34380768
pmcid: 7612153
doi: 10.1126/scitranslmed.abd1616
Kamada, T. et al. PD-1
pubmed: 31028147
pmcid: 6525547
doi: 10.1073/pnas.1822001116
Fidelle, M. et al. A microbiota-modulated checkpoint directs immunosuppressive intestinal T cells into cancers. Science 380, eabo2296 (2023).
pubmed: 37289890
doi: 10.1126/science.abo2296
Chen, M.-L. et al. Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-β signals in vivo. Proc. Natl Acad. Sci. USA 102, 419–424 (2005).
pubmed: 15623559
doi: 10.1073/pnas.0408197102
Mempel, T. R. et al. Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation. Immunity 25, 129–141 (2006).
pubmed: 16860762
doi: 10.1016/j.immuni.2006.04.015
Turnis, M. E. et al. Interleukin-35 limits anti-tumor immunity. Immunity 44, 316–329 (2016).
pubmed: 26872697
pmcid: 4758699
doi: 10.1016/j.immuni.2016.01.013
Collison, L. W. et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450, 566–569 (2007).
pubmed: 18033300
doi: 10.1038/nature06306
Deaglio, S. et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 204, 1257–1265 (2007).
pubmed: 17502665
pmcid: 2118603
doi: 10.1084/jem.20062512
Grossman, W. J. et al. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 21, 589–601 (2004).
pubmed: 15485635
doi: 10.1016/j.immuni.2004.09.002
Wing, K. et al. CTLA-4 control over Foxp3
pubmed: 18845758
doi: 10.1126/science.1160062
Marangoni, F. et al. Expansion of tumor-associated T
pubmed: 34157302
pmcid: 8664158
doi: 10.1016/j.cell.2021.05.027
Mishima, Y. et al. Microbiota maintain colonic homeostasis by activating TLR2/MyD88/PI3K signaling in IL-10-producing regulatory B cells. J. Clin. Invest. 129, 3702–3716 (2019).
pubmed: 31211700
pmcid: 6715367
doi: 10.1172/JCI93820
Shen, P. et al. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature 507, 366–370 (2014).
pubmed: 24572363
pmcid: 4260166
doi: 10.1038/nature12979
Yoshizaki, A. et al. Regulatory B cells control T-cell autoimmunity through IL-21-dependent cognate interactions. Nature 491, 264–268 (2012).
pubmed: 23064231
pmcid: 3493692
doi: 10.1038/nature11501
Rosser, E. C. et al. Regulatory B cells are induced by gut microbiota-driven interleukin-1β and interleukin-6 production. Nat. Med. 20, 1334–1339 (2014).
pubmed: 25326801
doi: 10.1038/nm.3680
Andreu, P. et al. FcRγ activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell 17, 121–134 (2010).
pubmed: 20138013
pmcid: 3082507
doi: 10.1016/j.ccr.2009.12.019
Affara, N. I. et al. B cells regulate macrophage phenotype and response to chemotherapy in squamous carcinomas. Cancer Cell 25, 809–821 (2014).
pubmed: 24909985
pmcid: 4063283
doi: 10.1016/j.ccr.2014.04.026
Olkhanud, P. B. et al. Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4
pubmed: 21444674
pmcid: 3096701
doi: 10.1158/0008-5472.CAN-10-4316
Horikawa, M., Minard-Colin, V., Matsushita, T. & Tedder, T. F. Regulatory B cell production of IL-10 inhibits lymphoma depletion during CD20 immunotherapy in mice. J. Clin. Invest. 121, 4268–4280 (2011).
pubmed: 22019587
pmcid: 3204847
doi: 10.1172/JCI59266
Xiao, X. et al. PD-1
pubmed: 26928313
doi: 10.1158/2159-8290.CD-15-1408
Pylayeva-Gupta, Y. et al. IL35-producing B cells promote the development of pancreatic neoplasia. Cancer Discov. 6, 247–255 (2016).
pubmed: 26715643
doi: 10.1158/2159-8290.CD-15-0843
Ammirante, M., Luo, J.-L., Grivennikov, S., Nedospasov, S. & Karin, M. B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 464, 302–305 (2010).
pubmed: 20220849
pmcid: 2866639
doi: 10.1038/nature08782
Bod, L. et al. B-cell-specific checkpoint molecules that regulate anti-tumour immunity. Nature 619, 348–356 (2023).
pubmed: 37344597
pmcid: 10795478
doi: 10.1038/s41586-023-06231-0
Ruf, B., Greten, T. F. & Korangy, F. Innate lymphoid cells and innate-like T cells in cancer — at the crossroads of innate and adaptive immunity. Nat. Rev. Cancer 23, 351–371 (2023).
pubmed: 37081117
doi: 10.1038/s41568-023-00562-w
Corvino, D., Kumar, A. & Bald, T. Plasticity of NK cells in cancer. Front. Immunol. 13, 888313 (2022).
pubmed: 35619715
pmcid: 9127295
doi: 10.3389/fimmu.2022.888313
Portale, F. & Di Mitri, D. NK cells in cancer: mechanisms of dysfunction and therapeutic potential. Int. J. Mol. Sci. 24, 9521 (2023).
pubmed: 37298470
pmcid: 10253405
doi: 10.3390/ijms24119521
Tong, L. et al. NK cells and solid tumors: therapeutic potential and persisting obstacles. Mol. Cancer 21, 206 (2022).
pubmed: 36319998
pmcid: 9623927
doi: 10.1186/s12943-022-01672-z
Chung, D. C. et al. Generation of an inhibitory NK cell subset by TGF-β1/IL-15 polarization. J. Immunol. 212, 1904–1912 (2024).
pubmed: 38668728
pmcid: 11149900
doi: 10.4049/jimmunol.2300834
Boonpiyathad, T., Sözener, Z. C., Satitsuksanoa, P. & Akdis, C. A. Immunologic mechanisms in asthma. Semin. Immunol. 46, 101333 (2019).
pubmed: 31703832
doi: 10.1016/j.smim.2019.101333
Ercolano, G., Falquet, M., Vanoni, G., Trabanelli, S. & Jandus, C. ILC2s: new actors in tumor immunity. Front. Immunol. 10, 2801 (2019).
pubmed: 31849977
pmcid: 6902088
doi: 10.3389/fimmu.2019.02801
Panda, S. K. & Colonna, M. Innate lymphoid cells in mucosal immunity. Front. Immunol. 10, 861 (2019).
pubmed: 31134050
pmcid: 6515929
doi: 10.3389/fimmu.2019.00861
Carrega, P. et al. NCR
pubmed: 26395069
doi: 10.1038/ncomms9280
Eisenring, M., vom Berg, J., Kristiansen, G., Saller, E. & Becher, B. IL-12 initiates tumor rejection via lymphoid tissue-inducer cells bearing the natural cytotoxicity receptor NKp46. Nat. Immunol. 11, 1030–1038 (2010).
pubmed: 20935648
doi: 10.1038/ni.1947
Sonnenberg, G. F. & Hepworth, M. R. Functional interactions between innate lymphoid cells and adaptive immunity. Nat. Rev. Immunol. 19, 599–613 (2019).
pubmed: 31350531
pmcid: 6982279
doi: 10.1038/s41577-019-0194-8
Wang, W. et al. Nerves in the tumor microenvironment: origin and effects. Front. Cell Dev. Biol. 8, 601738 (2020).
pubmed: 33392191
pmcid: 7773823
doi: 10.3389/fcell.2020.601738
Reavis, H. D., Chen, H. I. & Drapkin, R. Tumor innervation: cancer has some nerve. Trends Cancer 6, 1059–1067 (2020).
pubmed: 32807693
pmcid: 7688507
doi: 10.1016/j.trecan.2020.07.005
Hanahan, D. & Monje, M. Cancer hallmarks intersect with neuroscience in the tumor microenvironment. Cancer Cell 41, 573–580 (2023).
pubmed: 36917953
pmcid: 10202656
doi: 10.1016/j.ccell.2023.02.012
Wrona, D. Neural–immune interactions: an integrative view of the bidirectional relationship between the brain and immune systems. J. Neuroimmunol. 172, 38–58 (2006).
pubmed: 16375977
doi: 10.1016/j.jneuroim.2005.10.017
Anisman, H. et al. Neuroimmune mechanisms in health and disease: 1. Health. CMAJ 155, 867–874 (1996).
pubmed: 8837533
pmcid: 1335446
Eckerling, A., Ricon-Becker, I., Sorski, L., Sandbank, E. & Ben-Eliyahu, S. Stress and cancer: mechanisms, significance and future directions. Nat. Rev. Cancer 21, 767–785 (2021).
pubmed: 34508247
doi: 10.1038/s41568-021-00395-5
Bucsek, M. J. et al. β-Adrenergic signaling in mice housed at standard temperatures suppresses an effector phenotype in CD8
pubmed: 28819022
pmcid: 5645237
doi: 10.1158/0008-5472.CAN-17-0546
Qiao, G., Chen, M., Bucsek, M. J., Repasky, E. A. & Hylander, B. L. Adrenergic signaling: a targetable checkpoint limiting development of the antitumor immune response. Front. Immunol. 9, 164 (2018).
pubmed: 29479349
pmcid: 5812031
doi: 10.3389/fimmu.2018.00164
Globig, A.-M. et al. The β1-adrenergic receptor links sympathetic nerves to T cell exhaustion. Nature 622, 383–392 (2023). Functional studies in mouse models document the T cell-inhibiting effects of stress-induced catecholamines released through sympathetic innervation of tumours, a correlation that translates in human association studies.
pubmed: 37731001
pmcid: 10871066
doi: 10.1038/s41586-023-06568-6
Haldar, R. et al. Perioperative COX2 and β-adrenergic blockade improves biomarkers of tumor metastasis, immunity, and inflammation in colorectal cancer: a randomized controlled trial. Cancer 126, 3991–4001 (2020).
pubmed: 32533792
doi: 10.1002/cncr.32950
Yang, M.-W. et al. Perineural invasion reprograms the immune microenvironment through cholinergic signaling in pancreatic ductal adenocarcinoma. Cancer Res. 80, 1991–2003 (2020). This study demonstrates that acetylcholine released from parasympathetic neurons in the context of perineural invasion by cancer cells is immunosuppressive, acting on both cancer cells and T cells.
pubmed: 32098780
doi: 10.1158/0008-5472.CAN-19-2689
Guo, X. et al. Midkine activation of CD8
pubmed: 32358581
pmcid: 7195398
doi: 10.1038/s41467-020-15770-3
Swanton, C. et al. Embracing cancer complexity: hallmarks of systemic disease. Cell 187, 1589–1616 (2024).
pubmed: 38552609
doi: 10.1016/j.cell.2024.02.009
Derosa, L. et al. Custom scoring based on ecological topology of gut microbiota associated with cancer immunotherapy outcome. Cell 187, 3373–3389.e16 (2024).
pubmed: 38906102
doi: 10.1016/j.cell.2024.05.029
Wu, J., Zhang, P., Mei, W. & Zeng, C. Intratumoral microbiota: implications for cancer onset, progression, and therapy. Front. Immunol. 14, 1301506 (2023).
pubmed: 38292482
doi: 10.3389/fimmu.2023.1301506
Guan, S.-W., Lin, Q. & Yu, H.-B. Intratumour microbiome of pancreatic cancer. World J. Gastrointest. Oncol. 15, 713–730 (2023).
pubmed: 37275446
pmcid: 10237023
doi: 10.4251/wjgo.v15.i5.713
Falcomatà, C. et al. Context-specific determinants of the immunosuppressive tumor microenvironment in pancreatic cancer. Cancer Discov. 13, 278–297 (2023).
pubmed: 36622087
pmcid: 9900325
doi: 10.1158/2159-8290.CD-22-0876
Pushalkar, S. et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 8, 403–416 (2018). This study delineates bacteria selectively abundant in pancreatic tumours compared with the gut, which are functionally involved in suppressing adaptive antitumour immunity, implicating the tumour microbiome as an immunomodulatory component of the TME.
pubmed: 29567829
pmcid: 6225783
doi: 10.1158/2159-8290.CD-17-1134
Chen, Y. et al. Oncogenic collagen I homotrimers from cancer cells bind to α3β1 integrin and impact tumor microbiome and immunity to promote pancreatic cancer. Cancer Cell 40, 818–834.e9 (2022). This study describes the functional activity of a collagen homotrimer expressed by pancreatic cancer cells, which modulates the immunosuppressive phenotype of the tumour microbiome.
pubmed: 35868307
pmcid: 9831277
doi: 10.1016/j.ccell.2022.06.011
Goubet, A.-G. Could the tumor-associated microbiota be the new multi-faceted player in the tumor microenvironment? Front. Oncol. 13, 1185163 (2023).
pubmed: 37287916
pmcid: 10242102
doi: 10.3389/fonc.2023.1185163
Gihawi, A. et al. Major data analysis errors invalidate cancer microbiome findings. mBio 14, e0160723 (2023).
pubmed: 37811944
doi: 10.1128/mbio.01607-23
Gihawi, A., Cooper, C. S. & Brewer, D. S. Caution regarding the specificities of pan-cancer microbial structure. Microb. Genom. 9, mgen001088 (2023).
pubmed: 37555750
pmcid: 10483429
Luo, Z. et al. Modulating tumor physical microenvironment for fueling CAR-T cell therapy. Adv. Drug. Deliv. Rev. 185, 114301 (2022).
pubmed: 35439570
doi: 10.1016/j.addr.2022.114301
Nia, H. T., Munn, L. L. & Jain, R. K. Physical traits of cancer. Science 370, eaaz0868 (2020).
pubmed: 33122355
pmcid: 8274378
doi: 10.1126/science.aaz0868
Rhim, A. D. et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25, 735–747 (2014).
pubmed: 24856585
pmcid: 4096698
doi: 10.1016/j.ccr.2014.04.021
Piersma, B., Hayward, M.-K. & Weaver, V. M. Fibrosis and cancer: a strained relationship. Biochim. Biophys. Acta Rev. Cancer 1873, 188356 (2020).
pubmed: 32147542
pmcid: 7733542
doi: 10.1016/j.bbcan.2020.188356
Özdemir, B. C. et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25, 719–734 (2014).
pubmed: 24856586
pmcid: 4180632
doi: 10.1016/j.ccr.2014.04.005
Menjivar, R. E. et al. Arginase 1 is a key driver of immune suppression in pancreatic cancer. eLife 12, e80721 (2023).
pubmed: 36727849
pmcid: 10260021
doi: 10.7554/eLife.80721
Perricone, M. D. & Lyssiotis, C. A. Fibrotic tumors tune metabolism for immune evasion. Nat. Cancer 5, 955–957 (2024).
pubmed: 38831057
doi: 10.1038/s43018-024-00758-5
Arner, E. N. & Rathmell, J. C. Metabolic programming and immune suppression in the tumor microenvironment. Cancer Cell 41, 421–433 (2023).
pubmed: 36801000
pmcid: 10023409
doi: 10.1016/j.ccell.2023.01.009
Siska, P. J. et al. Mitochondrial dysregulation and glycolytic insufficiency functionally impair CD8 T cells infiltrating human renal cell carcinoma. JCI Insight 2, e93411 (2017).
pubmed: 28614802
pmcid: 5470888
doi: 10.1172/jci.insight.93411
Jiang, H., Hegde, S. & DeNardo, D. G. Tumor-associated fibrosis as a regulator of tumor immunity and response to immunotherapy. Cancer Immunol. Immunother. 66, 1037–1048 (2017).
pubmed: 28451791
pmcid: 5603233
doi: 10.1007/s00262-017-2003-1
Hiam-Galvez, K. J., Allen, B. M. & Spitzer, M. H. Systemic immunity in cancer. Nat. Rev. Cancer 21, 345–359 (2021).
pubmed: 33837297
pmcid: 8034277
doi: 10.1038/s41568-021-00347-z
Galliverti, G. et al. Myeloid cells orchestrate systemic immunosuppression, impairing the efficacy of immunotherapy against HPV
pubmed: 31771984
doi: 10.1158/2326-6066.CIR-19-0315
Allen, B. M. et al. Systemic dysfunction and plasticity of the immune macroenvironment in cancer models. Nat. Med. 26, 1125–1134 (2020). Together with Galliverti et al. (2020), this study describes a new facet of immune evasion, namely, the capability of certain cancer cells in several mouse models to systemically suppress the generation and expansion of tumour-specific T cells in the lymphatic organs.
pubmed: 32451499
pmcid: 7384250
doi: 10.1038/s41591-020-0892-6
Biswas, A. K. & Acharyya, S. Understanding cachexia in the context of metastatic progression. Nat. Rev. Cancer 20, 274–284 (2020).
pubmed: 32235902
doi: 10.1038/s41568-020-0251-4
Nakamura, Y., Saldajeno, D. P., Kawaguchi, K. & Kawaoka, S. Progressive, multi-organ, and multi-layered nature of cancer cachexia. Cancer Sci. 115, 715–722 (2024).
pubmed: 38254286
pmcid: 10921013
doi: 10.1111/cas.16078
Ferreira, C. S. et al. Predictive potential of angiopoietin-2 in a mCRC subpopulation treated with vanucizumab in the McCAVE trial. Front. Oncol. 13, 1157596 (2023).
pubmed: 37207143
pmcid: 10190963
doi: 10.3389/fonc.2023.1157596
Albain, K. S. et al. Neoadjuvant trebananib plus paclitaxel-based chemotherapy for stage II/III breast cancer in the adaptively randomized I-SPY2 trial-efficacy and biomarker discovery. Clin. Cancer Res. 30, 729–740 (2024).
pubmed: 38109213
pmcid: 10956403
doi: 10.1158/1078-0432.CCR-22-2256
Bilen, M. A. et al. Association of neutrophil-to-lymphocyte ratio with efficacy of first-line avelumab plus axitinib vs. sunitinib in patients with advanced renal cell carcinoma enrolled in the phase 3 JAVELIN renal 101 trial. Clin. Cancer Res. 28, 738–747 (2022).
pubmed: 34789480
doi: 10.1158/1078-0432.CCR-21-1688
Kuo, H.-Y., Khan, K. A. & Kerbel, R. S. Antiangiogenic-immune-checkpoint inhibitor combinations: lessons from phase III clinical trials. Nat. Rev. Clin. Oncol. 21, 468–482 (2024).
pubmed: 38600370
doi: 10.1038/s41571-024-00886-y
Binnewies, M. et al. Targeting TREM2 on tumor-associated macrophages enhances immunotherapy. Cell Rep. 37, 109844 (2021). This article illustrates the potential for therapeutic targeting of immunosuppressive TAMs to enhance antitumour immunity.
pubmed: 34686340
doi: 10.1016/j.celrep.2021.109844
Kaczanowska, S. et al. Genetically engineered myeloid cells rebalance the core immune suppression program in metastasis. Cell 184, 2033–2052.e21 (2021).
pubmed: 33765443
pmcid: 8344805
doi: 10.1016/j.cell.2021.02.048
Klichinsky, M. et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat. Biotechnol. 38, 947–953 (2020).
pubmed: 32361713
pmcid: 7883632
doi: 10.1038/s41587-020-0462-y
Mund, A., Brunner, A.-D. & Mann, M. Unbiased spatial proteomics with single-cell resolution in tissues. Mol. Cell 82, 2335–2349 (2022).
pubmed: 35714588
doi: 10.1016/j.molcel.2022.05.022
Jin, Y. et al. Advances in spatial transcriptomics and its applications in cancer research. Mol. Cancer 23, 129 (2024).
pubmed: 38902727
pmcid: 11188176
doi: 10.1186/s12943-024-02040-9
Williams, H. L. et al. The current landscape of spatial biomarkers for prediction of response to immune checkpoint inhibition. npj Precis. Oncol. 8, 178 (2024).
pubmed: 39138341
pmcid: 11322473
doi: 10.1038/s41698-024-00671-1
Evans, S. S., Repasky, E. A. & Fisher, D. T. Fever and the thermal regulation of immunity: the immune system feels the heat. Nat. Rev. Immunol. 15, 335–349 (2015).
pubmed: 25976513
pmcid: 4786079
doi: 10.1038/nri3843
He, M. et al. The crosstalk between DNA-damage responses and innate immunity. Int. Immunopharmacol. 140, 112768 (2024).
pubmed: 39088918
doi: 10.1016/j.intimp.2024.112768
Tong, J. et al. When DNA-damage responses meet innate and adaptive immunity. Cell Mol. Life Sci. 81, 185 (2024).
pubmed: 38630271
pmcid: 11023972
doi: 10.1007/s00018-024-05214-2