Vaccine-induced human monoclonal antibodies to PfRH5 show broadly neutralizing activity against P. falciparum clinical isolates.


Journal

NPJ vaccines
ISSN: 2059-0105
Titre abrégé: NPJ Vaccines
Pays: England
ID NLM: 101699863

Informations de publication

Date de publication:
24 Oct 2024
Historique:
received: 31 05 2024
accepted: 28 09 2024
medline: 25 10 2024
pubmed: 25 10 2024
entrez: 25 10 2024
Statut: epublish

Résumé

Vaccines to the Plasmodium falciparum reticulocyte binding-like protein homologue 5 (PfRH5) target the blood-stage of the parasite life cycle. PfRH5 has the potential to trigger the production of strain-transcendent antibodies and has proven its efficacy both in pre-clinical and early clinical studies. Vaccine-induced monoclonal antibodies (mAbs) to PfRH5 showed promising outcomes against cultured P. falciparum laboratory strains from distinct geographic areas. Here, we assessed the functional impact of vaccine-induced anti-PfRH5 mAbs on more genetically diverse P. falciparum clinical isolates. We used mAbs previously isolated from single B cells of UK adult PfRH5 vaccinees and used ex-vivo growth inhibition activity (GIA) assays to assess their efficacy against P. falciparum clinical isolates. Next-generation sequencing (NGS) was used to assess the breadth of genetic diversity in P. falciparum clinical isolates and to infer the genotype/phenotype relationship involved in antibody susceptibility. We showed a dose-dependent inhibition of clinical isolates with three main GIA groups: high, medium and low. Except for one isolate, our data show no significant differences in the mAb GIA profile between P. falciparum clinical isolates and the 3D7 reference strain, which harbors the vaccine allele. We also observed an additive relationship for mAb combinations, whereby the combination of GIA-low and GIA-medium antibodies resulted in increased GIA, having important implications for the contribution of specific clones within polyclonal IgG responses. While our NGS analysis showed the occurrence of novel mutations in the pfrh5 gene, these mutations were predicted to have little or no functional impact on the antigen structure or recognition by known mAbs. Our present findings complement earlier reports on the strain transcendent potential of anti-PfRH5 mAbs and constitute, to our knowledge, the first report on the susceptibility of P. falciparum clinical isolates from natural infections to vaccine-induced human mAbs to PfRH5.

Identifiants

pubmed: 39448626
doi: 10.1038/s41541-024-00986-x
pii: 10.1038/s41541-024-00986-x
doi:

Types de publication

Journal Article

Langues

eng

Pagination

198

Subventions

Organisme : FIC NIH HHS
ID : K01 TW010496
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI168238
Pays : United States
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : R61 AI176583-01
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
ID : 1S10OD030363-01A1

Informations de copyright

© 2024. The Author(s).

Références

Organization, W. H. World malaria report 2023. (2023).
WHO, U. and. Reversing the Incidence of Malaria 2000–2015. WHO Glob. Malar. Program (2015).
Cibulskis, R. E. et al. Malaria: Global progress 2000 - 2015 and future challenges. Infectious Diseases of Poverty https://doi.org/10.1186/s40249-016-0151-8 (2016).
Balikagala, B. et al. Evidence of Artemisinin-Resistant Malaria in Africa. N. Engl. J. Med. https://doi.org/10.1056/nejmoa2101746 (2021).
Duffy, P. E. & Patrick Gorres, J. Malaria vaccines since 2000: progress, priorities, products. npj Vaccines 5, 1–9 (2020).
doi: 10.1038/s41541-020-0196-3
Rts, S. C. T. P. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet 386, 31–45 (2015).
doi: 10.1016/S0140-6736(15)60721-8
Datoo, M. S. et al. Safety and efficacy of malaria vaccine candidate R21/Matrix-M in African children: a multicentre, double-blind, randomised, phase 3 trial. Lancet 533–544. https://doi.org/10.1016/S0140-6736(23)02511-4 (2024)
Thera, M. A. et al. Safety and immunogenicity of an AMA1 malaria vaccine in Malian children: Results of a phase 1 randomized controlled trial. PLoS One 5, (2010).
Thera, M. A. et al. Safety and immunogenicity of an AMA-1 malaria vaccine in Malian adults: Results of a phase 1 randomized controlled trial. PLoS One 3, (2008).
Polhemus, M. E. et al. Phase I dose escalation safety and immunogenicity trial of Plasmodium falciparum apical membrane protein (AMA-1) FMP2.1, adjuvanted with AS02A, in malaria-naïve adults at the Walter Reed Army Institute of Research. Vaccine 25, 4203–4212 (2007).
doi: 10.1016/j.vaccine.2007.03.012 pubmed: 17442466
Payne, R. O. et al. Demonstration of the blood-stage plasmodium falciparum controlled human malaria infection model to assess efficacy of the p. falciparum apical membrane antigen 1 Vaccine, FMP2.1/AS01. J. Infect. Dis. https://doi.org/10.1093/infdis/jiw039 (2016).
Thera, M. A. et al. A Field Trial to Assess a Blood-Stage Malaria Vaccine. N. Engl. J. Med. 365, 1004–1013 (2011).
doi: 10.1056/NEJMoa1008115 pubmed: 21916638 pmcid: 3242358
Neafsey, D. E. et al. Genetic Diversity and Protective Efficacy of the RTS,S/AS01 Malaria Vaccine. N. Engl. J. Med. 373, 2025–2037 (2015).
doi: 10.1056/NEJMoa1505819 pubmed: 26488565 pmcid: 4762279
Douglas, A. D. et al. The blood-stage malaria antigen PfRH5 is susceptible to vaccine-inducible cross-strain neutralizing antibody. Nat. Commun. 2, (2011).
Baum, J. et al. Reticulocyte-binding protein homologue 5 - An essential adhesin involved in invasion of human erythrocytes by Plasmodium falciparum. Int. J. Parasitol. 39, 371–380 (2009).
doi: 10.1016/j.ijpara.2008.10.006 pubmed: 19000690
Rodriguez, M., Lustigman, S., Montero, E., Oksov, Y. & Lobo, C. A. PfRH5: A novel reticulocyte-binding family homolog of Plasmodium falciparum that binds to the erythrocyte, and an investigation of its receptor. PLoS One 3, 1–8 (2008).
doi: 10.1371/annotation/dde6c172-c9c3-43bb-8fc3-db54613d4424
Payne, R. O. et al. Human vaccination against Plasmodium vivax Duffy-binding protein induces strain-transcending antibodies. JCI insight https://doi.org/10.1172/jci.insight.93683 (2017)
Silk, S. E. et al. Superior antibody immunogenicity of a viral-vectored RH5 blood-stage malaria vaccine in Tanzanian infants as compared to adults. Med 4, 668–686.e7 (2023).
doi: 10.1016/j.medj.2023.07.003 pubmed: 37572659
Williams, A. R. et al. Enhancing Blockade of Plasmodium falciparum Erythrocyte Invasion: Assessing Combinations of Antibodies against PfRH5 and Other Merozoite Antigens. PLoS Pathog. 8, e1002991 (2012).
doi: 10.1371/journal.ppat.1002991 pubmed: 23144611 pmcid: 3493472
Bustamante, L. Y. et al. A full-length recombinant Plasmodium falciparum PfRH5 protein induces inhibitory antibodies that are effective across common PfRH5 genetic variants. Vaccine 31, 373–379 (2013).
doi: 10.1016/j.vaccine.2012.10.106 pubmed: 23146673 pmcid: 3538003
Reddy, K. S. et al. Multiprotein complex between the GPI-anchored CyRPA with PfRH5 and PfRipr is crucial for Plasmodium falciparum erythrocyte invasion. Proc. Natl Acad. Sci. Usa. 112, 1179–1184 (2015).
doi: 10.1073/pnas.1415466112 pubmed: 25583518 pmcid: 4313826
Douglas, A. D. et al. A defined mechanistic correlate of protection against Plasmodium falciparum malaria in non-human primates. Nat. Commun. 10, 1–8 (2019).
doi: 10.1038/s41467-019-09894-4
Douglas, A. D. et al. A PfRH5-based vaccine is efficacious against heterologous strain blood-stage plasmodium falciparum infection in Aotus monkeys. Cell Host Microbe 17, 130–139 (2015).
doi: 10.1016/j.chom.2014.11.017 pubmed: 25590760 pmcid: 4297294
Minassian, A. M. et al. Reduced blood-stage malaria growth and immune correlates in humans following RH5 vaccination. Med 2, 701–719.e19 (2021).
doi: 10.1016/j.medj.2021.03.014 pubmed: 34223402
Alanine, D. G. W. et al. Human Antibodies that Slow Erythrocyte Invasion Potentiate Malaria-Neutralizing Antibodies. Cell 178, 216–228.e21 (2019).
doi: 10.1016/j.cell.2019.05.025 pubmed: 31204103 pmcid: 6602525
Douglas, A. D. et al. Neutralization of Plasmodium falciparum Merozoites by Antibodies against PfRH5. J. Immunol. 192, 245–258 (2014).
doi: 10.4049/jimmunol.1302045 pubmed: 24293631
Bei, A. K. et al. Research Article A flow cytometry-based assay for measuring invasion of red blood cells by Plasmodium falciparum. 234–237 https://doi.org/10.1002/ajh.21642 (2010).
Wright, K. E. et al. Structure of malaria invasion protein RH5 with erythrocyte basigin and blocking antibodies. Nature 515, 427–430 (2014).
doi: 10.1038/nature13715 pubmed: 25132548 pmcid: 4240730
Miura, K. et al. Assessment of precision in growth inhibition assay (GIA) using human anti-PfRH5 antibodies. Malar. J. 22, 1–14 (2023).
doi: 10.1186/s12936-023-04591-6
Azasi, Y. et al. Bliss’ and Loewe’s additive and synergistic effects in Plasmodium falciparum growth inhibition by AMA1-RON2L, RH5, RIPR and CyRPA antibody combinations. Sci. Rep. 10, 1–12 (2020).
doi: 10.1038/s41598-020-67877-8
Barrett, J. R. et al. Analysis of the Diverse Antigenic Landscape of the Malaria Invasion Protein RH5 Identifies a Potent Vaccine-Induced Human Public Antibody Clonotype. bioRxiv 2023.10.04.560576 (2023).
Wong, W. et al. Structure of Plasmodium falciparum Rh5–CyRPA–Ripr invasion complex. Nature https://doi.org/10.1038/s41586-018-0779-6 (2019).
Wright, G. J. & Rayner, J. C. Plasmodium falciparum Erythrocyte Invasion: Combining Function with Immune Evasion. PLoS Pathog. 10, 1–7 (2014).
doi: 10.1371/journal.ppat.1003943
Nielsen, C. M. et al. Protein/AS01B vaccination elicits stronger, more Th2-skewed antigen-specific human T follicular helper cell responses than heterologous viral vectors. Cell Rep. Med 2, 100207 (2021).
doi: 10.1016/j.xcrm.2021.100207 pubmed: 33763653 pmcid: 7974546
Ajibaye, O. et al. Genetic polymorphisms in malaria vaccine candidate Plasmodium falciparum reticulocyte-binding protein homologue-5 among populations in Lagos, Nigeria. Malar. J. 19, 1–12 (2020).
doi: 10.1186/s12936-019-3096-0
Mangou, K. et al. Structure-guided insights into potential function of novel genetic variants in the malaria vaccine candidate PfRh5. Sci. Rep. 12, 1–10 (2022).
doi: 10.1038/s41598-022-23929-9
Moore, A. J. et al. Assessing the functional impact of PfRh5 genetic diversity on ex vivo erythrocyte invasion inhibition. Sci. Rep. 11, 1–8 (2021).
doi: 10.1038/s41598-021-81711-9
Ndwiga, L. et al. The Plasmodium falciparum Rh5 invasion protein complex reveals an excess of rare variant mutations. Malar. J. 20, 1–10 (2021).
doi: 10.1186/s12936-021-03815-x
Waweru, H. et al. Limited genetic variations of the Rh5-CyRPA-Ripr invasion complex in Plasmodium falciparum parasite population in selected malaria-endemic regions, Kenya. Front. Trop. Dis. 4, 1–9 (2023).
doi: 10.3389/fitd.2023.1102265
Silk, S. E. et al. Blood-stage malaria vaccine candidate RH5.1/Matrix-M in healthy Tanzanian adults and children; an open-label, non-randomised, first-in-human, single-centre, phase 1b trial. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(24)00312-8 (2024).
Neafsey, D. E., Taylor, A. R. & MacInnis, B. L. Advances and opportunities in malaria population genomics. Nat. Rev. Genet. 22, 502–517 (2021).
doi: 10.1038/s41576-021-00349-5 pubmed: 33833443 pmcid: 8028584
Manske, M. et al. Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing. Nature https://doi.org/10.1038/nature11174 (2012).
Patel, S. D. et al. Plasmodium falciparum merozoite surface antigen, PfRH5, elicits detectable levels of invasion-inhibiting antibodies in humans. J. Infect. Dis. 208, 1679–1687 (2013).
doi: 10.1093/infdis/jit385 pubmed: 23904294 pmcid: 3805239
Triglia, T. et al. Plasmepsin X activates the PCRCR complex of Plasmodium falciparum by processing PfRh5 for erythrocyte invasion. Nat. Commun. https://doi.org/10.1038/s41467-023-37890-2 (2023).
King, L. D. W. et al. Preclinical Development of a Stabilized RH5 Virus-Like Particle Vaccine that Induces Improved Anti-Malarial Antibodies (2024).
Farrell, B. et al. Structure of the PfRCR complex which bridges the malaria parasite and erythrocyte during invasion. bioRxiv (Springer US, https://doi.org/10.1038/s41586-023-06856-1 2023).
Thiam, L. G., Ansah, F., Niang, M., Awandare, G. A. & Aniweh, Y. Short-term cryopreservation and thawing have minimal effects on Plasmodium falciparum ex vivo invasion profile. Front. Cell. Infect. Microbiol. https://doi.org/10.3389/fcimb.2022.997418 (2022).
Thiam, L. G. Investigating Factors Influencing Variation in P. Falciparum Invasion Phenotyping Assays. (University if Ghana, Legon, 2019).
Thiam, L. G. et al. Blood donor variability is a modulatory factor for P. falciparum invasion phenotyping assays. Sci. Rep. 11, 1–14 (2021).
doi: 10.1038/s41598-021-86438-1
Schrodinger, L. The PyMOL Molecular Graphics System (2015).

Auteurs

Laty G Thiam (LG)

G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal.

Kirsty McHugh (K)

Department of Biochemistry and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.

Aboubacar Ba (A)

G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal.

Rebecca Li (R)

Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.

Yicheng Guo (Y)

Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.

Mariama N Pouye (MN)

G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal.

Awa Cisse (A)

Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.

Dimitra Pipini (D)

Department of Biochemistry and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.

Fatoumata Diallo (F)

G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal.

Seynabou D Sene (SD)

G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal.

Saurabh D Patel (SD)

G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal.

Alassane Thiam (A)

G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal.

Bacary D Sadio (BD)

Pôle Virologie, Institut Pasteur de Dakar, Dakar, Senegal.

Alassane Mbengue (A)

G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal.

Inés Vigan-Womas (I)

G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal.

Zizhang Sheng (Z)

Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.

Lawrence Shapiro (L)

Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
Department of Biochemistry and Biophysics, Columbia University, New York, NY, USA.

Simon J Draper (SJ)

Department of Biochemistry and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
NIHR Oxford Biomedical Research Centre, Oxford, UK.

Amy K Bei (AK)

G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal. amy.bei@yale.edu.
Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA. amy.bei@yale.edu.

Classifications MeSH