Interactions between sexual signaling and wing size drive ecology and evolution of wing colors in Odonata.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
23 10 2024
Historique:
received: 17 06 2024
accepted: 19 09 2024
medline: 24 10 2024
pubmed: 24 10 2024
entrez: 23 10 2024
Statut: epublish

Résumé

Insect coloration has evolved in response to multiple pressures, and in Odonata (dragonflies and damselflies) a body of work supports a role of wing color in a variety of visual signals and potentially in thermoregulation. Previous efforts have focused primarily on melanistic coloration even though wings are often multicolored, and there has yet to be comprehensive comparative analyses of wing color across broad geographic regions and phylogenetic groups. Percher vs. flier flight-style, a trait with thermoregulatory and signaling consequences, has not yet been studied with regard to color. We used a new color clustering approach to quantify color across a dataset of over 8,000 odonate wing images representing 343 Nearctic species. We then utilized phylogenetically informed Bayesian zero-inflated mixture models to test how color varies with mean ambient temperature, body size, sex and flight-style. We found that wing coloration clustered into two groups across all specimens - light brown-yellow and black-dark brown - with black-dark brown being a much more cohesive grouping. Male perchers have a greater proportion of black-dark brown color on their wings as do species with longer wings. In colder climates, odonates were more likely to have black-dark brown color present, but we found no relationship between the proportion of black and temperature. Light brown-yellow showed similar scaling with wing length, but no relationship with temperature. Our results suggest that black-dark brown coloration may have a limited role in thermoregulation, while light brown-yellow does not have such a role. We also find that the odonate sexes are divergent in wing color in percher species only, suggesting a strong role for color in signaling in more territorial males. Our research contributes to an understanding of complex interactions driving ecological and evolutionary dynamics of color in animals.

Identifiants

pubmed: 39443507
doi: 10.1038/s41598-024-73612-4
pii: 10.1038/s41598-024-73612-4
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

25034

Subventions

Organisme : NSF
ID : 2002489
Organisme : NSF
ID : 2002489
Organisme : NSF
ID : 2002489
Organisme : NSF
ID : 2002489
Organisme : NSF
ID : 2002489

Informations de copyright

© 2024. The Author(s).

Références

Bybee, S. M., Johnson, K. K., Gering, E. J., Whiting, M. F. & Crandall, K. A. All the better to see you with: a review of odonate color vision with transcriptomic insight into the odonate eye. Org. Divers. Evol. 12, 241–250 (2012).
doi: 10.1007/s13127-012-0090-6
Suvorov, A. et al. Opsins have evolved under the permanent heterozygote model: insights from phylotranscriptomics of Odonata. Mol. Ecol. 26(5), 1306–1322 (2017).
doi: 10.1111/mec.13884 pubmed: 27758014
Futahashi, R. et al. Extraordinary diversity of visual opsin genes in dragonflies. Proc. Natl. Acad. Sci. 112(11), E1247–E1256 (2015).
doi: 10.1073/pnas.1424670112 pubmed: 25713365 pmcid: 4371951
Córdoba-Aguilar, A. Wing pigmentation in territorial male damselflies, Calopteryx haemorrhoidalis: a possible relation to sexual selection. Anim. Behav. 63(4), 759–766 (2002).
doi: 10.1006/anbe.2001.1974
Clusella-Trullas, S. & Nielsen, M. The evolution of insect body coloration under changing climates. Curr. Opin. Insect Sci. 41, 25–32 (2020).
doi: 10.1016/j.cois.2020.05.007 pubmed: 32629405
Postema, E. G., Lippey, M. K. & Armstrong-Ingram, T. Color under pressure: how multiple factors shape defensive coloration. Behav. Ecol. 34(1), 1–13 (2023).
doi: 10.1093/beheco/arac056
Garrison, R. W. Multivariate analysis of geographic variation in Libellula luctuosa Burmeister. Pan-Pac Entomol. 52(3), 181–203 (1976).
Moore, M. P., Lis, C., Gherghel, I. & Martin, R. A. Temperature shapes the costs, benefits and geographic diversification of sexual coloration in a dragonfly. Ecol. Lett.22(3), 437–446 (2019).
doi: 10.1111/ele.13200 pubmed: 30616297
Guillermo-Ferreira, R., Bispo, P. C., Appel, E., Kovalev, A. & Gorb, S. N. Structural coloration predicts the outcome of male contests in the amazonian damselfly Chalcopteryx scintillans (Odonata: Polythoridae). Arthropod Struct. Dev. 53, 100884 (2019).
doi: 10.1016/j.asd.2019.100884 pubmed: 31669831
Corbet, P. S. Dragonflies: Behaviour and Ecology of Odonata (Harley books, 1999).
Grether, G. F., Drury, J. P., Berlin, E. & Anderson, C. N. The role of wing coloration in sex recognition and competitor recognition in rubyspot damselflies (Hetaerina spp). Ethology. 121(7), 674–685 (2015).
doi: 10.1111/eth.12382
Guillermo-Ferreira, R., Therézio, E. M., Gehlen, M. H., Bispo, P. C. & Marletta, A. The role of wing pigmentation, UV and fluorescence as signals in a neotropical damselfly. J. Insect Behav. 27, 67–80 (2014).
doi: 10.1007/s10905-013-9406-4
Tynkkynen, K., Rantala, M. J. & Suhonen, J. Interspecific aggression and character displacement in the damselfly Calopteryx splendens. J. Evol. Biol. 17(4), 759–767 (2004).
doi: 10.1111/j.1420-9101.2004.00733.x pubmed: 15271075
Svensson, E. I. & Waller, J. T. Ecology and sexual selection: evolution of wing pigmentation in calopterygid damselflies in relation to latitude, sexual dimorphism, and speciation. Am. Natl. 182(5), E174–E195 (2013).
doi: 10.1086/673206
Corbet, P. S. & May, M. L. Fliers and perchers among Odonata: dichotomy or multidimensional continuum? A provisional reappraisal. Int. J. Odonatol. 11(2), 155–171 (2008).
doi: 10.1080/13887890.2008.9748320
Aromaa, S., J Ilvonen, J. & Suhonen, J. Body mass and territorial defence strategy affect the territory size of odonate species. Proc. R Soc. B. 286(1917), 20192398 (2019).
doi: 10.1098/rspb.2019.2398 pubmed: 31847780 pmcid: 6939934
Schmidt-Nielsen, K. Scaling: Why is Animal Size so Important? (Cambridge University Press, 1984).
Heinrich, B. The Hot-Blooded Insects: Strategies and Mechanisms of Thermoregulation (Harvard University Press, 1993).
Rivas, M., Martínez-Meyer, E., Muñoz, J. & Córdoba‐Aguilar, A. Body temperature regulation is associated with climatic and geographical variables but not wing pigmentation in two rubyspot damselflies (Odonata: Calopterygidae). Physiol. Entomol. 41(2), 132–142 (2016).
doi: 10.1111/phen.12137
Outomuro, D. & Ocharan, F. J. Wing pigmentation in Calopteryx damselflies: a role in thermoregulation? Biol. J. Linn. Soc. 103(1), 36–44 (2011).
doi: 10.1111/j.1095-8312.2011.01641.x
Guillermo-Ferreira, R. & Gorb, S. N. Heat-distribution in the body and wings of the morpho dragonfly Zenithoptera lanei (Anisoptera: Libellulidae) and a possible mechanism of thermoregulation. Biol. J. Linn. Soc. 133(1), 179–186 (2021).
doi: 10.1093/biolinnean/blaa216
Moore, M. P. et al. Sex-specific ornament evolution is a consistent feature of climatic adaptation across space and time in dragonflies. Proc. Natl. Acad. Sci. 118(28), e2101458118 (2021).
Lopez, V. M., Datto-Liberato, F., Gorb, S. N. & Guillermo-Ferreira, R. A critique of the use of colour lightness in animal studies. Biol. J. Linn. Soc. blae015. (2024).
Cerasoli, F., D’Alessandro, P. & Biondi, M. Worldclim 2.1 versus Worldclim 1.4: climatic niche and grid resolution affect between-version mismatches in habitat suitability models predictions across Europe. Ecol. Evol. 12(2), e8430. (2022).
Weller, H. I., Van Belleghem, S. M., Hiller, A. E. & Lord, N. P. Recolorize: improved color segmentation of digital images (for people with other things to do). bioRxiv. 10(2022.04), 03–486906 (2022).
Von Luxburg, U., Williamson, R. C. & Guyon, I. Clustering: Science or art? In Proceedings of ICML workshop on unsupervised and transfer learning (pp. 65–79). JMLR Workshop and Conference Proceedings (2012).
Bürkner, P. C. Brms: an R package for bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).
doi: 10.18637/jss.v080.i01
Li, D. & Ives, A. R. The statistical need to include phylogeny in trait-based analyses of community composition. Methods Ecol. Evol. 8(10), 1192–1199 (2017).
doi: 10.1111/2041-210X.12767
Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. & Gelman, A. Visualization in bayesian workflow. J. R Stat. Soc. Ser. Stat. Soc. 182, 389–402 (2019).
doi: 10.1111/rssa.12378
Bishop, T. R. et al. Ant assemblages have darker and larger members in cold environments. Glob Ecol. Biogeogr. 25(12), 1489–1499 (2016).
doi: 10.1111/geb.12516
Briscoe, A. D. et al. Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies. Proc. Natl. Acad. Sci. 107(8), 3628–3633 (2010).
doi: 10.1073/pnas.0910085107 pubmed: 20133601 pmcid: 2840532
Idec, J. H., Bishop, T. R. & Fisher, B. L. Using computer vision to understand the global biogeography of ant color. Ecography. 2023(3), e06279 (2023).
doi: 10.1111/ecog.06279
Outomuro, D., Dijkstra, K. D. & Johansson, F. Habitat variation and wing coloration affect wing shape evolution in dragonflies. J. Evol. Biol. 26(9), 1866–1874 (2013).
doi: 10.1111/jeb.12203 pubmed: 23837400
May, M. L. Thermal adaptations of dragonflies, revisited. Adv. Odonatol. 5(1), 71–88 (1991).
Tiple, A. D., Khurad, A. M., Padwad, S. V. & Dennis, R. L. Morphological and colour pattern associations of male mate location behaviour in central Indian butterflies.
Futahashi, R. Diversity of UV reflection patterns in Odonata. Front. Ecol. Evol. 8, 201 (2020).
doi: 10.3389/fevo.2020.00201
Joshi, S. & Agashe, D. Ontogenic colour change, survival, and mating in the damselfly Agriocnemis Pygmaea Rambur (Insecta: Odonata). Ecol. Entomol. 45(5), 1015–1024 (2020).
doi: 10.1111/een.12879
Rodríguez-Escobar, F. E., Carrillo-Muñoz, A. I. & Serrano-Meneses, M. A. Seasonal variation in the allometry of wing pigmentation in adult males of the territorial damselfly Hetaerina vulnerata (Insecta Odonata). Ethol. Ecol. Evol. 32(2), 148–161 (2020).
doi: 10.1080/03949370.2019.1693432

Auteurs

Jacob Idec (J)

Florida Museum of Natural History, University of Florida, Gainesville, FL, USA. jacob.idec@ufl.edu.

Seth Bybee (S)

Department of Biology and Monte L. Bean Museum, Brigham Young University, Provo, UT, USA.

Jessica Ware (J)

Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, 10024, USA.

John Abbott (J)

Department of Museum Research and Collections, Alabama Museum of Natural History, The University of Alabama, Tuscaloosa, AL, USA.

Rhainer Guillermo Ferreira (RG)

Entomology and Experimental Biology Center, Federal University of Triangulo Mineiro, Uberaba, MG, Brazil.

Anton Suvorov (A)

Department of Biological Sciences, VirginiaTech, Blacksburg, VA, USA.

Manpreet Kohli (M)

Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, 10024, USA.
Baruch College, City University of New York, New York, NY, USA.

Louis Eppel (L)

Department of Biology and Monte L. Bean Museum, Brigham Young University, Provo, UT, USA.

William R Kuhn (WR)

Discover Life in America, Gatlinburg, TN, USA.

Michael Belitz (M)

Florida Museum of Natural History, University of Florida, Gainesville, FL, USA.
Ecology, Evolution, and Behavior Program, Department of Integrative Biology, Michigan State University, East Lansing, MI, USA.

Robert Guralnick (R)

Florida Museum of Natural History, University of Florida, Gainesville, FL, USA.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH