Development of a


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
24 Oct 2024
Historique:
received: 28 02 2023
accepted: 08 10 2024
medline: 24 10 2024
pubmed: 24 10 2024
entrez: 23 10 2024
Statut: epublish

Résumé

NADH and NAD

Identifiants

pubmed: 39443469
doi: 10.1038/s41467-024-53292-4
pii: 10.1038/s41467-024-53292-4
doi:

Substances chimiques

NAD 0U46U6E8UK
Adenosine Triphosphate 8L70Q75FXE
Phosphorus Isotopes 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

9159

Subventions

Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : ('MRS in diabetes' grant no 759161)

Informations de copyright

© 2024. The Author(s).

Références

Ortega, F. B., Lavie, C. J. & Blair, S. N. Obesity and cardiovascular disease. Circ. Res. 118, 1752–1770 (2016).
pubmed: 27230640 doi: 10.1161/CIRCRESAHA.115.306883
Collaboration, N. C. D. R. F. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet 390, 2627–2642 (2017).
doi: 10.1016/S0140-6736(17)32129-3
Wild, S., Roglic, G., Green, A., Sicree, R. & King, H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diab. Care 27, 1047–1053 (2004).
doi: 10.2337/diacare.27.5.1047
Hesselink, M. K., Schrauwen-Hinderling, V. & Schrauwen, P. Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus. Nat. Rev. Endocrinol. 12, 633–645 (2016).
pubmed: 27448057 doi: 10.1038/nrendo.2016.104
Frederick, D. W. et al. Loss of NAD homeostasis leads to progressive and reversible degeneration of skeletal muscle. Cell Metab. 24, 269–282 (2016).
pubmed: 27508874 pmcid: 4985182 doi: 10.1016/j.cmet.2016.07.005
Lowell, B. B. & Shulman, G. I. Mitochondrial dysfunction and type 2 diabetes. Science 307, 384–387 (2005).
pubmed: 15662004 doi: 10.1126/science.1104343
de Guia, R. M. et al. Aerobic and resistance exercise training reverses age-dependent decline in NAD(+) salvage capacity in human skeletal muscle. Physiol. Rep. 7, e14139 (2019).
pubmed: 31207144 pmcid: 6577427
Kim, H. J. et al. Metabolomic analysis of livers and serum from high-fat diet induced obese mice. J. Proteome Res. 10, 722–731 (2011).
pubmed: 21047143 doi: 10.1021/pr100892r
Zhu, X. H., Lu, M., Lee, B. Y., Ugurbil, K. & Chen, W. In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences. Proc. Natl Acad. Sci. USA 112, 2876–2881 (2015).
pubmed: 25730862 pmcid: 4352772 doi: 10.1073/pnas.1417921112
Massudi, H. et al. Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PLoS ONE 7, e42357 (2012).
pubmed: 22848760 pmcid: 3407129 doi: 10.1371/journal.pone.0042357
Janssens, G. E. et al. Healthy aging and muscle function are positively associated with NAD(+) abundance in humans. Nat. Aging 2, 254–263 (2022).
pubmed: 37118369 doi: 10.1038/s43587-022-00174-3
Yoshino, J., Mills, K. F., Yoon, M. J. & Imai, S. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 14, 528–536 (2011).
pubmed: 21982712 pmcid: 3204926 doi: 10.1016/j.cmet.2011.08.014
Stein, L. R. & Imai, S. The dynamic regulation of NAD metabolism in mitochondria. Trends Endocrinol. Metab. 23, 420–428 (2012).
pubmed: 22819213 pmcid: 3683958 doi: 10.1016/j.tem.2012.06.005
Lu, M., Zhu, X. H. & Chen, W. In vivo (31) P MRS assessment of intracellular NAD metabolites and NAD(+) /NADH redox state in human brain at 4 T. NMR Biomed. 29, 1010–1017 (2016).
pubmed: 27257783 pmcid: 4909585 doi: 10.1002/nbm.3559
De Graaf, R. A. et al. Detection of cerebral NAD(+) in humans at 7T. Magn. Reson. Med. 78, 828–835 (2017).
pubmed: 27670385 doi: 10.1002/mrm.26465
Meyerspeer, M. et al. (31) P magnetic resonance spectroscopy in skeletal muscle: experts’ consensus recommendations. NMR Biomed. 34, e4246 (2020).
pubmed: 32037688 pmcid: 8243949 doi: 10.1002/nbm.4246
Hetherington, H. P., Spencer, D. D., Vaughan, J. T. & Pan, J. W. Quantitative (31)P spectroscopic imaging of human brain at 4 Tesla: assessment of gray and white matter differences of phosphocreatine and ATP. Magn. Reson. Med. 45, 46–52 (2001).
pubmed: 11146485 doi: 10.1002/1522-2594(200101)45:1<46::AID-MRM1008>3.0.CO;2-N
De Graaf R. A. In Vivo NMR Spectroscopy: Principles and Techniques. (John Wiley & Sons, 2013).
Mescher, M., Merkle, H., Kirsch, J., Garwood, M. & Gruetter, R. Simultaneous in vivo spectral editing and water suppression. NMR Biomed. 11, 266–272 (1998).
pubmed: 9802468 doi: 10.1002/(SICI)1099-1492(199810)11:6<266::AID-NBM530>3.0.CO;2-J
Sørensen, O. W., Rance, M. & Ernst, R. R. z Filters for purging phase- or multiplet-distorted spectra. J. Magn. Reson. (1969) 56, 527–534 (1984).
doi: 10.1016/0022-2364(84)90317-2
Sahlin, K. NADH and NADPH in human skeletal muscle at rest and during ischaemia. Clin. Physiol. 3, 477–485 (1983).
pubmed: 6685600 doi: 10.1111/j.1475-097X.1983.tb00856.x
Poljsak B., Kovac V. & Milisav I. Healthy lifestyle recommendations: do the beneficial effects originate from NAD(+) amount at the cellular level? Oxid. Med. Cell Longev. https://doi.org/10.1155/2020/88196272020 (2020).
Grevendonk, L. et al. Impact of aging and exercise on skeletal muscle mitochondrial capacity, energy metabolism, and physical function. Nat. Commun. 12, 4773 (2021).
pubmed: 34362885 pmcid: 8346468 doi: 10.1038/s41467-021-24956-2
Soderlund, K. & Hultman, E. ATP content in single fibres from human skeletal muscle after electrical stimulation and during recovery. Acta Physiol. Scand. 139, 459–466 (1990).
pubmed: 2239349 doi: 10.1111/j.1748-1716.1990.tb08947.x
Dziadosz, M. et al. Quantification of NAD(+) in human brain with (1) H MR spectroscopy at 3 T: comparison of three localization techniques with different handling of water magnetization. Magn. Reson. Med. 88, 1027–1038 (2022).
pubmed: 35526238 pmcid: 9322547 doi: 10.1002/mrm.29267
Adriany, G. & Gruetter, R. A half-volume coil for efficient proton decoupling in humans at 4 tesla. J. Magn. Reson. 125, 178–184 (1997).
pubmed: 9245377 doi: 10.1006/jmre.1997.1113
van Zijl, P. C., Moonen, C. T. & von Kienlin, M. Homonuclear J refocusing in echo spectroscopy. J. Magn. Reson. (1969) 89, 28–40 (1990).
doi: 10.1016/0022-2364(90)90159-7
Keeler J. Understanding NMR Spectroscopy. (Wiley, Chichester, England, 2005).
Sørensen, O. W., Eich, G. W., Levitt, M. H., Bodenhausen, G. & Ernst, R. R. Product operator formalism for the description of NMR pulse experiments. Prog. Nucl. Magn. Reson. Spectrosc. 16, 163–192 (1984).
doi: 10.1016/0079-6565(84)80005-9
Kingsley, P. B. Product operators, coherence pathways, and phase cycling. Part II. Coherence pathways in multipulse sequences: spin echoes, stimulated echoes, and multiple‐quantum coherences. Concepts Magn. Reson. 7, 115–136 (1995).
doi: 10.1002/cmr.1820070203
Rance, M., Bodenhausen, G., Wagner, G., Wüthrich, K. & Ernst, R. R. A systematic approach to the suppression of J cross peaks in 2D exchange and 2D NOE spectroscopy. J. Magn. Reson. (1969) 62, 497–510 (1985).
doi: 10.1016/0022-2364(85)90218-5
Dempster, P. & Aitkens, S. A new air displacement method for the determination of human body composition. Med. Sci. Sports Exerc. 27, 1692–1697 (1995).
pubmed: 8614327 doi: 10.1249/00005768-199512000-00017
Siri, W. E. Body composition from fluid spaces and density: analysis of methods. Nutrition 9, 480–91 (1961).
Schrauwen-Hinderling, V. B. et al. Impaired in vivo mitochondrial function but similar intramyocellular lipid content in patients with type 2 diabetes mellitus and BMI-matched control subjects. Diabetologia 50, 113–120 (2007).
pubmed: 17093944 doi: 10.1007/s00125-006-0475-1
Bergstrom, J. Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand. J. Clin. Lab Invest. 35, 609–616 (1975).
pubmed: 1108172 doi: 10.3109/00365517509095787
Conley, K. E., Ali, A. S., Flores, B., Jubrias, S. A. & Shankland, E. G. Mitochondrial NAD(P)H In vivo: identifying natural indicators of oxidative phosphorylation in the (31)P magnetic resonance spectrum. Front. Physiol. 7, 45 (2016).
pubmed: 27065875 pmcid: 4812112 doi: 10.3389/fphys.2016.00045
Lu, M., Zhu, X. H., Zhang, Y. & Chen, W. Intracellular redox state revealed by in vivo (31) P MRS measurement of NAD(+) and NADH contents in brains. Magn. Reson. Med. 71, 1959–1972 (2014).
pubmed: 23843330 doi: 10.1002/mrm.24859
Bogner, W. et al. Assessment of (31)P relaxation times in the human calf muscle: a comparison between 3 T and 7 T in vivo. Magn. Reson. Med. 62, 574–582 (2009).
pubmed: 19526487 doi: 10.1002/mrm.22057
Ratiney, H. et al. Time-domain semi-parametric estimation based on a metabolite basis set. NMR Biomed. 18, 1–13 (2005).
pubmed: 15660450 doi: 10.1002/nbm.895
Cavassila, S., Deval, S., Huegen, C., van Ormondt, D. & Graveron-Demilly, D. Cramer-Rao bound expressions for parametric estimation of overlapping peaks: influence of prior knowledge. J. Magn. Reson. 143, 311–320 (2000).
pubmed: 10729257 doi: 10.1006/jmre.1999.2002
Matsumura H. & Miyachi S. Cycling assay for nicotinamide adenine dinucleotides. Methods Enzymol. 69, 465–470 (1980).
Remie, C. M. E. et al. Nicotinamide riboside supplementation alters body composition and skeletal muscle acetylcarnitine concentrations in healthy obese humans. Am. J. Clin. Nutr. 112, 413–426 (2020).
pubmed: 32320006 pmcid: 7398770 doi: 10.1093/ajcn/nqaa072
Ritov, V. B., Menshikova, E. V. & Kelley, D. E. High-performance liquid chromatography-based methods of enzymatic analysis: electron transport chain activity in mitochondria from human skeletal muscle. Anal. Biochem. 333, 27–38 (2004).
pubmed: 15351277 doi: 10.1016/j.ab.2004.05.014
Blacker, T. S. & Duchen, M. R. Investigating mitochondrial redox state using NADH and NADPH autofluorescence. Free Radic. Biol. Med. 100, 53–65 (2016).
pubmed: 27519271 pmcid: 5145803 doi: 10.1016/j.freeradbiomed.2016.08.010
Blacker, T. S. et al. Separating NADH and NADPH fluorescence in live cells and tissues using FLIM. Nat. Commun. 5, 3936 (2014).
pubmed: 24874098 doi: 10.1038/ncomms4936
Guezennec, C. Y. et al. In situ NADH laser fluorimetry during muscle contraction in humans. Eur. J. Appl. Physiol. Occup. Physiol. 63, 36–42 (1991).
pubmed: 1915329 doi: 10.1007/BF00760798
de Graaf, R. A. & Behar, K. L. Detection of cerebral NAD(+) by in vivo (1)H NMR spectroscopy. NMR Biomed. 27, 802–809 (2014).
pubmed: 24831866 pmcid: 4459131 doi: 10.1002/nbm.3121

Auteurs

Julian Mevenkamp (J)

Maastricht University Medical Center, Department of Radiology & Nuclear Medicine, Maastricht, The Netherlands.
Maastricht University, Department of Nutrition & Movement Sciences (NUTRIM), Maastricht, The Netherlands.

Yvonne M H Bruls (YMH)

Maastricht University Medical Center, Department of Radiology & Nuclear Medicine, Maastricht, The Netherlands.
Maastricht University, Department of Nutrition & Movement Sciences (NUTRIM), Maastricht, The Netherlands.

Rodrigo Mancilla (R)

Maastricht University, Department of Nutrition & Movement Sciences (NUTRIM), Maastricht, The Netherlands.
Exercise Physiology and Metabolism Laboratory (LABFEM), School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile.

Lotte Grevendonk (L)

Maastricht University, Department of Nutrition & Movement Sciences (NUTRIM), Maastricht, The Netherlands.

Joachim E Wildberger (JE)

Maastricht University Medical Center, Department of Radiology & Nuclear Medicine, Maastricht, The Netherlands.

Kim Brouwers (K)

Maastricht University Medical Center, Department of Radiology & Nuclear Medicine, Maastricht, The Netherlands.

Matthijs K C Hesselink (MKC)

Maastricht University, Department of Nutrition & Movement Sciences (NUTRIM), Maastricht, The Netherlands.

Patrick Schrauwen (P)

Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany.
Leiden University Medical Center, Clinical Epidemiology, Leiden, The Netherlands.

Joris Hoeks (J)

Maastricht University, Department of Nutrition & Movement Sciences (NUTRIM), Maastricht, The Netherlands.

Riekelt H Houtkooper (RH)

Amsterdam University Medical Center, Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands.

Mijke Buitinga (M)

Maastricht University Medical Center, Department of Radiology & Nuclear Medicine, Maastricht, The Netherlands.
Maastricht University, Department of Nutrition & Movement Sciences (NUTRIM), Maastricht, The Netherlands.

Robin A de Graaf (RA)

Yale School of Medicine, Department of Radiology & Biomedical Imaging, New Haven, CT, USA.

Lucas Lindeboom (L)

Maastricht University Medical Center, Department of Radiology & Nuclear Medicine, Maastricht, The Netherlands.
Maastricht University, Department of Nutrition & Movement Sciences (NUTRIM), Maastricht, The Netherlands.

Vera B Schrauwen-Hinderling (VB)

Maastricht University Medical Center, Department of Radiology & Nuclear Medicine, Maastricht, The Netherlands. v.schrauwen@maastrichtuniversity.nl.
Maastricht University, Department of Nutrition & Movement Sciences (NUTRIM), Maastricht, The Netherlands. v.schrauwen@maastrichtuniversity.nl.
Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany. v.schrauwen@maastrichtuniversity.nl.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH