Development of a
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
24 Oct 2024
24 Oct 2024
Historique:
received:
28
02
2023
accepted:
08
10
2024
medline:
24
10
2024
pubmed:
24
10
2024
entrez:
23
10
2024
Statut:
epublish
Résumé
NADH and NAD
Identifiants
pubmed: 39443469
doi: 10.1038/s41467-024-53292-4
pii: 10.1038/s41467-024-53292-4
doi:
Substances chimiques
NAD
0U46U6E8UK
Adenosine Triphosphate
8L70Q75FXE
Phosphorus Isotopes
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
9159Subventions
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : ('MRS in diabetes' grant no 759161)
Informations de copyright
© 2024. The Author(s).
Références
Ortega, F. B., Lavie, C. J. & Blair, S. N. Obesity and cardiovascular disease. Circ. Res. 118, 1752–1770 (2016).
pubmed: 27230640
doi: 10.1161/CIRCRESAHA.115.306883
Collaboration, N. C. D. R. F. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet 390, 2627–2642 (2017).
doi: 10.1016/S0140-6736(17)32129-3
Wild, S., Roglic, G., Green, A., Sicree, R. & King, H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diab. Care 27, 1047–1053 (2004).
doi: 10.2337/diacare.27.5.1047
Hesselink, M. K., Schrauwen-Hinderling, V. & Schrauwen, P. Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus. Nat. Rev. Endocrinol. 12, 633–645 (2016).
pubmed: 27448057
doi: 10.1038/nrendo.2016.104
Frederick, D. W. et al. Loss of NAD homeostasis leads to progressive and reversible degeneration of skeletal muscle. Cell Metab. 24, 269–282 (2016).
pubmed: 27508874
pmcid: 4985182
doi: 10.1016/j.cmet.2016.07.005
Lowell, B. B. & Shulman, G. I. Mitochondrial dysfunction and type 2 diabetes. Science 307, 384–387 (2005).
pubmed: 15662004
doi: 10.1126/science.1104343
de Guia, R. M. et al. Aerobic and resistance exercise training reverses age-dependent decline in NAD(+) salvage capacity in human skeletal muscle. Physiol. Rep. 7, e14139 (2019).
pubmed: 31207144
pmcid: 6577427
Kim, H. J. et al. Metabolomic analysis of livers and serum from high-fat diet induced obese mice. J. Proteome Res. 10, 722–731 (2011).
pubmed: 21047143
doi: 10.1021/pr100892r
Zhu, X. H., Lu, M., Lee, B. Y., Ugurbil, K. & Chen, W. In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences. Proc. Natl Acad. Sci. USA 112, 2876–2881 (2015).
pubmed: 25730862
pmcid: 4352772
doi: 10.1073/pnas.1417921112
Massudi, H. et al. Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PLoS ONE 7, e42357 (2012).
pubmed: 22848760
pmcid: 3407129
doi: 10.1371/journal.pone.0042357
Janssens, G. E. et al. Healthy aging and muscle function are positively associated with NAD(+) abundance in humans. Nat. Aging 2, 254–263 (2022).
pubmed: 37118369
doi: 10.1038/s43587-022-00174-3
Yoshino, J., Mills, K. F., Yoon, M. J. & Imai, S. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 14, 528–536 (2011).
pubmed: 21982712
pmcid: 3204926
doi: 10.1016/j.cmet.2011.08.014
Stein, L. R. & Imai, S. The dynamic regulation of NAD metabolism in mitochondria. Trends Endocrinol. Metab. 23, 420–428 (2012).
pubmed: 22819213
pmcid: 3683958
doi: 10.1016/j.tem.2012.06.005
Lu, M., Zhu, X. H. & Chen, W. In vivo (31) P MRS assessment of intracellular NAD metabolites and NAD(+) /NADH redox state in human brain at 4 T. NMR Biomed. 29, 1010–1017 (2016).
pubmed: 27257783
pmcid: 4909585
doi: 10.1002/nbm.3559
De Graaf, R. A. et al. Detection of cerebral NAD(+) in humans at 7T. Magn. Reson. Med. 78, 828–835 (2017).
pubmed: 27670385
doi: 10.1002/mrm.26465
Meyerspeer, M. et al. (31) P magnetic resonance spectroscopy in skeletal muscle: experts’ consensus recommendations. NMR Biomed. 34, e4246 (2020).
pubmed: 32037688
pmcid: 8243949
doi: 10.1002/nbm.4246
Hetherington, H. P., Spencer, D. D., Vaughan, J. T. & Pan, J. W. Quantitative (31)P spectroscopic imaging of human brain at 4 Tesla: assessment of gray and white matter differences of phosphocreatine and ATP. Magn. Reson. Med. 45, 46–52 (2001).
pubmed: 11146485
doi: 10.1002/1522-2594(200101)45:1<46::AID-MRM1008>3.0.CO;2-N
De Graaf R. A. In Vivo NMR Spectroscopy: Principles and Techniques. (John Wiley & Sons, 2013).
Mescher, M., Merkle, H., Kirsch, J., Garwood, M. & Gruetter, R. Simultaneous in vivo spectral editing and water suppression. NMR Biomed. 11, 266–272 (1998).
pubmed: 9802468
doi: 10.1002/(SICI)1099-1492(199810)11:6<266::AID-NBM530>3.0.CO;2-J
Sørensen, O. W., Rance, M. & Ernst, R. R. z Filters for purging phase- or multiplet-distorted spectra. J. Magn. Reson. (1969) 56, 527–534 (1984).
doi: 10.1016/0022-2364(84)90317-2
Sahlin, K. NADH and NADPH in human skeletal muscle at rest and during ischaemia. Clin. Physiol. 3, 477–485 (1983).
pubmed: 6685600
doi: 10.1111/j.1475-097X.1983.tb00856.x
Poljsak B., Kovac V. & Milisav I. Healthy lifestyle recommendations: do the beneficial effects originate from NAD(+) amount at the cellular level? Oxid. Med. Cell Longev. https://doi.org/10.1155/2020/88196272020 (2020).
Grevendonk, L. et al. Impact of aging and exercise on skeletal muscle mitochondrial capacity, energy metabolism, and physical function. Nat. Commun. 12, 4773 (2021).
pubmed: 34362885
pmcid: 8346468
doi: 10.1038/s41467-021-24956-2
Soderlund, K. & Hultman, E. ATP content in single fibres from human skeletal muscle after electrical stimulation and during recovery. Acta Physiol. Scand. 139, 459–466 (1990).
pubmed: 2239349
doi: 10.1111/j.1748-1716.1990.tb08947.x
Dziadosz, M. et al. Quantification of NAD(+) in human brain with (1) H MR spectroscopy at 3 T: comparison of three localization techniques with different handling of water magnetization. Magn. Reson. Med. 88, 1027–1038 (2022).
pubmed: 35526238
pmcid: 9322547
doi: 10.1002/mrm.29267
Adriany, G. & Gruetter, R. A half-volume coil for efficient proton decoupling in humans at 4 tesla. J. Magn. Reson. 125, 178–184 (1997).
pubmed: 9245377
doi: 10.1006/jmre.1997.1113
van Zijl, P. C., Moonen, C. T. & von Kienlin, M. Homonuclear J refocusing in echo spectroscopy. J. Magn. Reson. (1969) 89, 28–40 (1990).
doi: 10.1016/0022-2364(90)90159-7
Keeler J. Understanding NMR Spectroscopy. (Wiley, Chichester, England, 2005).
Sørensen, O. W., Eich, G. W., Levitt, M. H., Bodenhausen, G. & Ernst, R. R. Product operator formalism for the description of NMR pulse experiments. Prog. Nucl. Magn. Reson. Spectrosc. 16, 163–192 (1984).
doi: 10.1016/0079-6565(84)80005-9
Kingsley, P. B. Product operators, coherence pathways, and phase cycling. Part II. Coherence pathways in multipulse sequences: spin echoes, stimulated echoes, and multiple‐quantum coherences. Concepts Magn. Reson. 7, 115–136 (1995).
doi: 10.1002/cmr.1820070203
Rance, M., Bodenhausen, G., Wagner, G., Wüthrich, K. & Ernst, R. R. A systematic approach to the suppression of J cross peaks in 2D exchange and 2D NOE spectroscopy. J. Magn. Reson. (1969) 62, 497–510 (1985).
doi: 10.1016/0022-2364(85)90218-5
Dempster, P. & Aitkens, S. A new air displacement method for the determination of human body composition. Med. Sci. Sports Exerc. 27, 1692–1697 (1995).
pubmed: 8614327
doi: 10.1249/00005768-199512000-00017
Siri, W. E. Body composition from fluid spaces and density: analysis of methods. Nutrition 9, 480–91 (1961).
Schrauwen-Hinderling, V. B. et al. Impaired in vivo mitochondrial function but similar intramyocellular lipid content in patients with type 2 diabetes mellitus and BMI-matched control subjects. Diabetologia 50, 113–120 (2007).
pubmed: 17093944
doi: 10.1007/s00125-006-0475-1
Bergstrom, J. Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand. J. Clin. Lab Invest. 35, 609–616 (1975).
pubmed: 1108172
doi: 10.3109/00365517509095787
Conley, K. E., Ali, A. S., Flores, B., Jubrias, S. A. & Shankland, E. G. Mitochondrial NAD(P)H In vivo: identifying natural indicators of oxidative phosphorylation in the (31)P magnetic resonance spectrum. Front. Physiol. 7, 45 (2016).
pubmed: 27065875
pmcid: 4812112
doi: 10.3389/fphys.2016.00045
Lu, M., Zhu, X. H., Zhang, Y. & Chen, W. Intracellular redox state revealed by in vivo (31) P MRS measurement of NAD(+) and NADH contents in brains. Magn. Reson. Med. 71, 1959–1972 (2014).
pubmed: 23843330
doi: 10.1002/mrm.24859
Bogner, W. et al. Assessment of (31)P relaxation times in the human calf muscle: a comparison between 3 T and 7 T in vivo. Magn. Reson. Med. 62, 574–582 (2009).
pubmed: 19526487
doi: 10.1002/mrm.22057
Ratiney, H. et al. Time-domain semi-parametric estimation based on a metabolite basis set. NMR Biomed. 18, 1–13 (2005).
pubmed: 15660450
doi: 10.1002/nbm.895
Cavassila, S., Deval, S., Huegen, C., van Ormondt, D. & Graveron-Demilly, D. Cramer-Rao bound expressions for parametric estimation of overlapping peaks: influence of prior knowledge. J. Magn. Reson. 143, 311–320 (2000).
pubmed: 10729257
doi: 10.1006/jmre.1999.2002
Matsumura H. & Miyachi S. Cycling assay for nicotinamide adenine dinucleotides. Methods Enzymol. 69, 465–470 (1980).
Remie, C. M. E. et al. Nicotinamide riboside supplementation alters body composition and skeletal muscle acetylcarnitine concentrations in healthy obese humans. Am. J. Clin. Nutr. 112, 413–426 (2020).
pubmed: 32320006
pmcid: 7398770
doi: 10.1093/ajcn/nqaa072
Ritov, V. B., Menshikova, E. V. & Kelley, D. E. High-performance liquid chromatography-based methods of enzymatic analysis: electron transport chain activity in mitochondria from human skeletal muscle. Anal. Biochem. 333, 27–38 (2004).
pubmed: 15351277
doi: 10.1016/j.ab.2004.05.014
Blacker, T. S. & Duchen, M. R. Investigating mitochondrial redox state using NADH and NADPH autofluorescence. Free Radic. Biol. Med. 100, 53–65 (2016).
pubmed: 27519271
pmcid: 5145803
doi: 10.1016/j.freeradbiomed.2016.08.010
Blacker, T. S. et al. Separating NADH and NADPH fluorescence in live cells and tissues using FLIM. Nat. Commun. 5, 3936 (2014).
pubmed: 24874098
doi: 10.1038/ncomms4936
Guezennec, C. Y. et al. In situ NADH laser fluorimetry during muscle contraction in humans. Eur. J. Appl. Physiol. Occup. Physiol. 63, 36–42 (1991).
pubmed: 1915329
doi: 10.1007/BF00760798
de Graaf, R. A. & Behar, K. L. Detection of cerebral NAD(+) by in vivo (1)H NMR spectroscopy. NMR Biomed. 27, 802–809 (2014).
pubmed: 24831866
pmcid: 4459131
doi: 10.1002/nbm.3121