Two weeks of exercise alters neuronal extracellular vesicle insulin signaling proteins and pro-BDNF in older adults with prediabetes.

aging glucose tolerance insulin sensitivity obesity physical activity type 2 diabetes

Journal

Aging cell
ISSN: 1474-9726
Titre abrégé: Aging Cell
Pays: England
ID NLM: 101130839

Informations de publication

Date de publication:
18 Oct 2024
Historique:
revised: 29 08 2024
received: 01 05 2024
accepted: 17 09 2024
medline: 18 10 2024
pubmed: 18 10 2024
entrez: 18 10 2024
Statut: aheadofprint

Résumé

Adults with prediabetes are at risk for Alzheimer's Disease and Related Dementia (ADRD). While exercise may lower ADRD risk, the exact mechanism is unclear. We tested the hypothesis that short-term exercise would raise neuronal insulin signaling and pro-BDNF in neuronal extracellular vesicles (nEVs) in prediabetes. Twenty-one older adults (18F, 60.0 ± 8.6 yrs.; BMI: 33.5 ± 1.1 kg/m

Identifiants

pubmed: 39421964
doi: 10.1111/acel.14369
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e14369

Subventions

Organisme : National Heart and Lung Institute
ID : RO1-HL130296

Informations de copyright

© 2024 The Author(s). Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

Références

Arnold, S. E., Arvanitakis, Z., Macauley‐Rambach, S. L., Koenig, A. M., Wang, H.‐Y., Ahima, R. S., & Nathan, D. M. (2018). Brain insulin resistance in type 2 diabetes and Alzheimer disease: Concepts and conundrums. Nature Reviews. Neurology, 14(3), 168–181. https://doi.org/10.1038/nrneurol.2017.185
Babaei, P., Azali Alamdari, K., Soltani Tehrani, B., & Damirchi, A. (2013). Effect of six weeks of endurance exercise and following detraining on serum brain derived neurotrophic factor and memory performance in middle aged males with metabolic syndrome. The Journal of Sports Medicine and Physical Fitness, 53(4), 437–443.
Bastard, J. P., Vandernotte, J. M., Faraj, M., Karelis, A. D., Messier, L., Malita, F. M., Garrel, D., Prud'homme, D., & Rabasa‐Lhoret, R. (2007). Relationship between the hyperinsulinemic‐euglycaemic clamp and a new simple index assessing insulin sensitivity in overweight and obese postmenopausal women. Diabetes & Metabolism, 33(4), 261–268. https://doi.org/10.1016/j.diabet.2007.02.004
Blommer, J., Pitcher, T., Mustapic, M., Eren, E., Yao, P. J., Vreones, M. P., Pucha, K. A., Dalrymple‐Alford, J., Shoorangiz, R., Meissner, W. G., Anderson, T., & Kapogiannis, D. (2023). Extracellular vesicle biomarkers for cognitive impairment in Parkinson's disease. Brain: A Journal of Neurology, 146(1), 195–208. https://doi.org/10.1093/brain/awac258
Broadhouse, K. M., Singh, M. F., Suo, C., Gates, N., Wen, W., Brodaty, H., Jain, N., Wilson, G. C., Meiklejohn, J., Singh, N., Baune, B. T., Baker, M., Foroughi, N., Wang, Y., Kochan, N., Ashton, K., Brown, M., Li, Z., Mavros, Y., … Valenzuela, M. J. (2020). Hippocampal plasticity underpins long‐term cognitive gains from resistance exercise in MCI. NeuroImage Clinical, 25, 102182. https://doi.org/10.1016/j.nicl.2020.102182
Cho, S. Y., & Roh, H. T. (2016). Effects of aerobic exercise training on peripheral brain‐derived neurotrophic factor and eotaxin‐1 levels in obese young men. Journal of Physical Therapy Science, 28(4), 1355–1358. https://doi.org/10.1589/jpts.28.1355
Chung, C.‐C., Pimentel, D. A., Jor'dan, A. J., Alfaro, F. J., Lioutas, V.‐A., Núñez, M. Z., & Novak, V. (2018). Lower cerebral Vasoreactivity As a predictor of gait speed decline in type 2 diabetes mellitus. Journal of Neurology, 265(10), 2267–2276. https://doi.org/10.1007/s00415‐018‐8981‐x
Colcombe, S. J., Erickson, K. I., Scalf, P. E., Kim, J. S., Prakash, R., McAuley, E., Elavsky, S., Marquez, D. X., Hu, L., & Kramer, A. F. (2006). Aerobic exercise training increases brain volume in aging humans. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 61(11), 1166–1170. https://doi.org/10.1093/gerona/61.11.1166
Damirchi, A., Tehrani, B. S., Alamdari, K. A., & Babaei, P. (2014). Influence of aerobic training and detraining on serum BDNF, insulin resistance, and metabolic risk factors in middle‐aged men diagnosed with metabolic syndrome. Clinical Journal of Sport Medicine: Official Journal of the Canadian Academy of Sport Medicine, 24(6), 513–518. https://doi.org/10.1097/JSM.0000000000000082
Delgado‐Peraza, F., Nogueras‐Ortiz, C., Simonsen, A. H., Knight, D. D., Yao, P. J., Goetzl, E. J., Jensen, C. S., Høgh, P., Gottrup, H., Vestergaard, K., Hasselbalch, S. G., & Kapogiannis, D. (2023). Neuron‐derived extracellular vesicles in blood reveal effects of exercise in Alzheimer's disease. Alzheimer's Research & Therapy, 15(1), 156. https://doi.org/10.1186/s13195‐023‐01303‐9
Dickens, A. M., Tovar‐Y‐Romo, L. B., Yoo, S.‐W., Trout, A. L., Bae, M., Kanmogne, M., Megra, B., Williams, D. W., Witwer, K. W., Gacias, M., Tabatadze, N., Cole, R. N., Casaccia, P., Berman, J. W., Anthony, D. C., & Haughey, N. J. (2017). Astrocyte‐shed extracellular vesicles regulate the peripheral leukocyte response to inflammatory brain lesions. Science Signaling, 10(473), eaai7696. https://doi.org/10.1126/scisignal.aai7696
Diehl, T., Mullins, R., & Kapogiannis, D. (2017). Insulin resistance in Alzheimer's disease. Translational Research: The Journal of Laboratory and Clinical Medicine, 183, 26–40. https://doi.org/10.1016/j.trsl.2016.12.005
Enette, L., Vogel, T., Merle, S., Valard‐Guiguet, A.‐G., Ozier‐Lafontaine, N., Neviere, R., Leuly‐Joncart, C., Fanon, J. L., & Lang, P. O. (2020). Effect of 9 weeks continuous vs. interval aerobic training on plasma BDNF levels, aerobic fitness, cognitive capacity and quality of life among seniors with mild to moderate Alzheimer's disease: A randomized controlled trial. European Review of Aging and Physical Activity: Official Journal of the European Group for Research into Elderly and Physical Activity, 17, 2. https://doi.org/10.1186/s11556‐019‐0234‐1
Fishel, M. A., Watson, G. S., Montine, T. J., Wang, Q., Green, P. S., Kulstad, J. J., Cook, D. G., Peskind, E. R., Baker, L. D., Goldgaber, D., Nie, W., Asthana, S., Plymate, S. R., Schwartz, M. W., & Craft, S. (2005). Hyperinsulinemia provokes synchronous increases in central inflammation and beta‐amyloid in normal adults. Archives of Neurology, 62(10), 1539–1544. https://doi.org/10.1001/archneur.62.10.noc50112
Gabbouj, S., Ryhänen, S., Marttinen, M., Wittrahm, R., Takalo, M., Kemppainen, S., Martiskainen, H., Tanila, H., Haapasalo, A., Hiltunen, M., & Natunen, T. (2019). Altered insulin signaling in Alzheimer's disease brain – Special emphasis on PI3K‐Akt pathway. Frontiers in Neuroscience, 13, 629. https://doi.org/10.3389/fnins.2019.00629
Gilbertson, N. M., Eichner, N. Z. M., Francois, M., Gaitán, J. M., Heiston, E. M., Weltman, A., & Malin, S. K. (2018). Glucose tolerance is linked to postprandial fuel use independent of exercise dose. Medicine and Science in Sports and Exercise, 50(10), 2058–2066. https://doi.org/10.1249/MSS.0000000000001667
Goekint, M., Roelands, B., De Pauw, K., Knaepen, K., Bos, I., & Meeusen, R. (2010). Does a period of detraining cause a decrease in serum brain‐derived neurotrophic factor? Neuroscience Letters, 486(3), 146–149. https://doi.org/10.1016/j.neulet.2010.09.032
Haroon, N. N., Austin, P. C., Shah, B. R., Wu, J., Gill, S. S., & Booth, G. L. (2015). Risk of dementia in seniors with newly diagnosed diabetes: A population‐based study. Diabetes Care, 38(10), 1868–1875. https://doi.org/10.2337/dc15‐0491
Hirvonen, J., Virtanen, K. A., Nummenmaa, L., Hannukainen, J. C., Honka, M.‐J., Bucci, M., Nesterov, S. V., Parkkola, R., Rinne, J., Iozzo, P., & Nuutila, P. (2011). Effects of insulin on brain glucose metabolism in impaired glucose tolerance. Diabetes, 60(2), 443–447. https://doi.org/10.2337/db10‐0940
Honkala, S. M., Johansson, J., Motiani, K. K., Eskelinen, J.‐J., Virtanen, K. A., Löyttyniemi, E., Knuuti, J., Nuutila, P., Kalliokoski, K. K., & Hannukainen, J. C. (2018). Short‐term interval training alters brain glucose metabolism in subjects with insulin resistance. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 38(10), 1828–1838. https://doi.org/10.1177/0271678X17734998
Kapogiannis, D., Boxer, A., Schwartz, J. B., Abner, E. L., Biragyn, A., Masharani, U., Frassetto, L., Petersen, R. C., Miller, B. L., & Goetzl, E. J. (2015). Dysfunctionally phosphorylated type 1 insulin receptor substrate in neural‐derived blood exosomes of preclinical Alzheimer's disease. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 29(2), 589–596. https://doi.org/10.1096/fj.14‐262048
Kapogiannis, D., Mustapic, M., Shardell, M. D., Berkowitz, S. T., Diehl, T. C., Spangler, R. D., Tran, J., Lazaropoulos, M. P., Chawla, S., Gulyani, S., Eitan, E., An, Y., Huang, C. W., Oh, E. S., Lyketsos, C. G., Resnick, S. M., Goetzl, E. J., & Ferrucci, L. (2019). Association of Extracellular Vesicle Biomarkers with Alzheimer Disease in the Baltimore longitudinal study of aging. JAMA Neurology, 76(11), 1340–1351. https://doi.org/10.1001/jamaneurol.2019.2462
Kapogiannis, D., Manolopoulos, A., Mullins, R., Avgerinos, K., Delgado‐Peraza, F., Mustapic, M., Nogueras‐Ortiz, C., Yao, P. J., Pucha, K. A., Brooks, J., Chen, Q., Haas, S. S., Ge, R., Hartnell, L. M., Cookson, M. R., Egan, J. M., Frangou, S., & Mattson, M. P. (2024). Brain responses to intermittent fasting and the healthy living diet in older adults. Cell Metabolism, 36, 1900–1904. https://doi.org/10.1016/j.cmet.2024.07.012
Kim, B., & Feldman, E. L. (2012). Insulin resistance in the nervous system. Trends in Endocrinology and Metabolism: TEM, 23(3), 133–141. https://doi.org/10.1016/j.tem.2011.12.004
Kullmann, S., Goj, T., Veit, R., Fritsche, L., Wagner, L., Schneeweiss, P., Hoene, M., Hoffmann, C., Machann, J., Niess, A., Preissl, H., Birkenfeld, A. L., Peter, A., Häring, H. U., Fritsche, A., Moller, A., Weigert, C., & Heni, M. (2022). Exercise restores brain insulin sensitivity in sedentary adults who are overweight and obese. JCI Insight, 7(18), e161498. https://doi.org/10.1172/jci.insight.161498
Kullmann, S., Kleinridders, A., Small, D. M., Fritsche, A., Häring, H.‐U., Preissl, H., & Heni, M. (2020). Central nervous pathways of insulin action in the control of metabolism and food intake. The Lancet. Diabetes & Endocrinology, 8(6), 524–534. https://doi.org/10.1016/S2213‐8587(20)30113‐3
Malin, S. K., Francois, M. E., Eichner, N. Z. M., Gilbertson, N. M., Heiston, E. M., Fabris, C., & Breton, M. (2018). Impact of short‐term exercise training intensity on β‐cell function in older obese adults with prediabetes. Journal of Applied Physiology (Bethesda, MD: 1985), 125(6), 1979–1986. https://doi.org/10.1152/japplphysiol.00680.2018
Malin, S. K., Stewart, N. R., Ude, A. A., & Alderman, B. A. (2022). Brain insulin resistance and cogntive function: Influence of exercise. Journal of Applied Physiology (Bethesda, MD: 1985), 133(6), 1368–1380. https://doi.org/10.1152/japplphysiol.00375.2022
Matthews, K. A., Xu, W., Gaglioti, A. H., Holt, J. B., Croft, J. B., Mack, D., & McGuire, L. C. (2019). Racial and ethnic estimates of Alzheimer's disease and related dementias in the United States (2015–2060) in adults aged ≥65 years. Alzheimer's & Dementia: The Journal of the Alzheimer's Association, 15(1), 17–24. https://doi.org/10.1016/j.jalz.2018.06.3063
Mazzoli, E., Salmon, J., Teo, W.‐P., Pesce, C., He, J., Ben‐Soussan, T. D., & Barnett, L. M. (2021). Breaking up classroom sitting time with cognitively engaging physical activity: Behavioural and brain responses. PLoS One, 16(7), e0253733. https://doi.org/10.1371/journal.pone.0253733
Nogueras‐Ortiz, C. J., Eren, E., Yao, P., Calzada, E., Dunn, C., Volpert, O., Delgado‐Peraza, F., Mustapic, M., Lyashkov, A., Rubio, F. J., Vreones, M., Cheng, L., You, Y., Hill, A. F., Ikezu, T., Eitan, E., Goetzl, E. J., & Kapogiannis, D. (2024). Single‐extracellular vesicle (EV) analyses validate the use of L1 cell adhesion molecule (L1CAM) as a reliable biomarker of neuron‐derived EVs. Journal of Extracellular Vesicles, 13, e12459. https://doi.org/10.1002/jev2.12459
Paillard, T. (2015). Preventive effects of regular physical exercise against cognitive decline and the risk of dementia with age advancement. Sports Medicine ‐ Open, 1(1), 20. https://doi.org/10.1186/s40798‐015‐0016‐x
Park, H.‐S., Park, S.‐S., Kim, C.‐J., Shin, M.‐S., & Kim, T.‐W. (2019). Exercise alleviates cognitive functions by enhancing hippocampal insulin signaling and neuroplasticity in high‐fat diet‐induced obesity. Nutrients, 11(7), 1603. https://doi.org/10.3390/nu11071603
Paulus, M., Kunkel, J., Schmidt, S. C. E., Bachert, P., Wäsche, H., Neumann, R., & Woll, A. (2021). Standing breaks in lectures improve university Students' self‐perceived physical, mental, and cognitive condition. International Journal of Environmental Research and Public Health, 18(8), 4204. https://doi.org/10.3390/ijerph18084204
Pulliam, L., Sun, B., Mustapic, M., Chawla, S., & Kapogiannis, D. (2019). Plasma neuronal exosomes serve as biomarkers of cognitive impairment in HIV infection and Alzheimer's disease. Journal of Neurovirology, 25(5), 702–709. https://doi.org/10.1007/s13365‐018‐0695‐4
Remchak, M.‐M. E., Piersol, K. L., Bhatti, S., Spaeth, A. M., Buckman, J. F., & Malin, S. K. (2021). Considerations for maximizing the exercise “drug” to combat insulin resistance: Role of nutrition, sleep, and alcohol. Nutrients, 13(5), 1708. https://doi.org/10.3390/nu13051708
Renner, D. B., Svitak, A. L., Gallus, N. J., Ericson, M. E., Frey, W. H., & Hanson, L. R. (2012). Intranasal delivery of insulin via the olfactory nerve pathway. The Journal of Pharmacy and Pharmacology, 64(12), 1709–1714. https://doi.org/10.1111/j.2042‐7158.2012.01555.x
Ruegsegger, G. N., Vanderboom, P. M., Dasari, S., Klaus, K. A., Kabiraj, P., McCarthy, C. B., Lucchinetti, C. F., & Nair, K. S. (2019). Exercise and metformin counteract altered mitochondrial function in the insulin‐resistant brain. JCI Insight, 4(18), e130681. https://doi.org/10.1172/jci.insight.130681
Swain, M., Soman, S. K., Tapia, K., Dagda, R. Y., & Dagda, R. K. (2023). Brain‐derived neurotrophic factor protects neurons by stimulating mitochondrial function through protein kinase a. Journal of Neurochemistry, 167(1), 104–125. https://doi.org/10.1111/jnc.15945
Takashima, A. (2006). GSK‐3 is essential in the pathogenesis of Alzheimer's disease. Journal of Alzheimer's Disease: JAD, 9(3 Suppl), 309–317. https://doi.org/10.3233/jad‐2006‐9s335
Vanhaesebroeck, B., & Alessi, D. R. (2000). The PI3K‐PDK1 connection: More than just a road to PKB. The Biochemical Journal, 346 Pt 3(Pt 3), 561–576.
Vreones, M., Mustapic, M., Moaddel, R., Pucha, K. A., Lovett, J., Seals, D. R., Kapogiannis, D., & Martens, C. R. (2023). Oral nicotinamide riboside raises NAD+ and lowers biomarkers of neurodegenerative pathology in plasma extracellular vesicles enriched for neuronal origin. Aging Cell, 22(1), e13754. https://doi.org/10.1111/acel.13754
Willette, A. A., Modanlo, N., Kapogiannis, D., & Alzheimer's Disease Neuroimaging Initiative. (2015). Insulin resistance predicts medial temporal hypermetabolism in mild cognitive impairment conversion to Alzheimer disease. Diabetes, 64, 1933–1940. https://doi.org/10.2337/db14‐1507
Zhang, H., Hao, Y., Manor, B., Novak, P., Milberg, W., Zhang, J., Fang, J., & Novak, V. (2015). Intranasal insulin enhanced resting‐state functional connectivity of hippocampal regions in type 2 diabetes. Diabetes, 64(3), 1025–1034. https://doi.org/10.2337/db14‐1000
Zhong, Y., Zhu, Y., He, T., Li, W., Li, Q., & Miao, Y. (2019). Brain‐derived neurotrophic factor inhibits hyperglycemia‐induced apoptosis and downregulation of synaptic plasticity‐related proteins in hippocampal neurons via the PI3K/Akt pathway. International Journal of Molecular Medicine, 43(1), 294–304. https://doi.org/10.3892/ijmm.2018.3933

Auteurs

Steven K Malin (SK)

Rutgers University, New Brunswick, New Jersey, USA.
Division of Endocrinology, Metabolism & Nutrition, Rutgers University, New Brunswick, New Jersey, USA.
New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA.
Institute of Translational Medicine and Science, Rutgers University, New Brunswick, New Jersey, USA.

Daniel J Battillo (DJ)

Rutgers University, New Brunswick, New Jersey, USA.

Michal S Beeri (MS)

Rutgers University, New Brunswick, New Jersey, USA.

Maja Mustapic (M)

National Institute on Aging, Baltimore, Maryland, USA.

Francheska Delgado-Peraza (F)

National Institute on Aging, Baltimore, Maryland, USA.

Dimitrios Kapogiannis (D)

National Institute on Aging, Baltimore, Maryland, USA.

Classifications MeSH