Frontoparietal network integrity supports cognitive function in pre-symptomatic frontotemporal dementia: Multimodal analysis of brain function, structure, and perfusion.

atrophy cerebral blood flow frontotemporal dementia functional network multimodal neuroimaging pre‐symptomatic dementia

Journal

Alzheimer's & dementia : the journal of the Alzheimer's Association
ISSN: 1552-5279
Titre abrégé: Alzheimers Dement
Pays: United States
ID NLM: 101231978

Informations de publication

Date de publication:
17 Oct 2024
Historique:
revised: 14 08 2024
received: 01 03 2024
accepted: 10 09 2024
medline: 17 10 2024
pubmed: 17 10 2024
entrez: 17 10 2024
Statut: aheadofprint

Résumé

Genetic mutation carriers of frontotemporal dementia can remain cognitively well despite neurodegeneration. A better understanding of brain structural, perfusion, and functional patterns in the pre-symptomatic stage could inform accurate staging and potential mechanisms. We included 207 pre-symptomatic genetic mutation carriers and 188 relatives without mutations. The gray matter volume, cerebral perfusion, and resting-state functional network maps were co-analyzed using linked independent component analysis (LICA). Multiple regression analysis was used to investigate the relationship of LICA components to genetic status and cognition. Pre-symptomatic mutation carriers showed an age-related decrease in the left frontoparietal network integrity, while non-carriers did not. Executive functions of mutation carriers became dependent on the left frontoparietal network integrity in older age. The frontoparietal network integrity of pre-symptomatic mutation carriers showed a distinctive relationship to age and cognition compared to non-carriers, suggesting a contribution of the network integrity to brain resilience. A multimodal analysis of structure, perfusion, and functional networks. The frontoparietal network integrity decreases with age in pre-symptomatic carriers only. Executive functions of pre-symptomatic carriers dissociated from non-carriers.

Identifiants

pubmed: 39417382
doi: 10.1002/alz.14299
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Cambridge Commonwealth, European and International Trust
Organisme : Dioraphte Foundation
ID : 09-02-03-00
Organisme : Netherlands Organization for Scientific Research
ID : HCMI 056-13-018
Organisme : Fundació Marató de TV3, Spain
ID : 20143810
Organisme : Swedish FTD Inititative-Schörling Foundation
Organisme : Alzheimer Foundation
Organisme : Brain Foundation
Organisme : Dementia Foundation
Organisme : Region Stockholm
ID : 733051042
Organisme : Mady Browaeys Fund
Organisme : Munich Cluster for Systems Neurology
ID : 390857198
Organisme : Federal Ministry of Education and Research
Organisme : Canadian Institute of Health Research
ID : 327387
Organisme : Weston Brain Institute
Organisme : Ontario Brain Institute
Organisme : Carlos III Health Institute
ID : PI19/01637
Organisme : MRC Clinician Scientist Fellowship
ID : MR/M008525/1
Organisme : European Reference Network for Rare Neurological Diseases
Organisme : Guarantors of Brain
ID : G101149
Organisme : Alzheimer's Society
ID : 602
Organisme : Wellcome Trust
ID : 103838
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 220258
Pays : United Kingdom
Organisme : Cambridge University Centre for Frontotemporal Dementia
Organisme : the Medical Research Council
ID : MC_UU_00030/14
Organisme : the Medical Research Council
ID : MR/T033371/1
Organisme : National Institute for Health Research Cambridge Biomedical Research Centre
ID : NIHR203312
Organisme : National Institute for Health Research Cambridge Biomedical Research Centre
ID : BRC-1215-20014
Organisme : Holt Fellowship
Organisme : EU Joint Programme-Neurodegenerative Disease Research
ID : 2019-02248

Informations de copyright

© 2024 The Author(s). Alzheimer's & Dementia published by Wiley Periodicals LLC on behalf of Alzheimer's Association.

Références

Bang J, Spina S, Miller BL. Frontotemporal dementia. Lancet. 2015;386:1672‐1682.
Rohrer JD, Guerreiro R, Vandrovcova J, et al. The heritability and genetics of frontotemporal lobar degeneration. Neurology. 2009;73:1451‐1456.
Kinnunen KM, Cash DM, Poole T, et al. Presymptomatic atrophy in autosomal dominant Alzheimer's disease: a serial magnetic resonance imaging study. Alzheimers Dement. 2018;14:43‐53.
Tsvetanov KA, Gazzina S, Jones PS, et al. Brain functional network integrity sustains cognitive function despite atrophy in presymptomatic genetic frontotemporal dementia. Alzheimers Dement. 2021;17:500‐514.
Jack CR Jr, Knopman DS, Jagust WJ, et al. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol. 2010;9:119‐128.
Rohrer JD, Nicholas JM, Cash DM, et al. Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: a cross‐sectional analysis. Lancet Neurol. 2015;14:253‐262.
Cash DM, Bocchetta M, Thomas DL, et al. Patterns of gray matter atrophy in genetic frontotemporal dementia: results from the GENFI study. Neurobiol Aging. 2018;62:191‐196.
Mutsaerts H, Mirza SS, Petr J, et al. Cerebral perfusion changes in presymptomatic genetic frontotemporal dementia: a GENFI study. Brain. 2019;142:1108‐1120.
Rittman T, Borchert R, Jones S, et al. Functional network resilience to pathology in presymptomatic genetic frontotemporal dementia. Neurobiol Aging. 2019;77:169‐177.
Whiteside DJ, Malpetti M, Jones PS, et al. Temporal dynamics predict symptom onset and cognitive decline in familial frontotemporal dementia. Alzheimers Dement. 2022;19(5):1947‐1962.
Miyagawa T, Brushaber D, Syrjanen J, et al. Utility of the global CDR((R)) plus NACC FTLD rating and development of scoring rules: data from the ARTFL/LEFFTDS Consortium. Alzheimers Dement. 2020;16:106‐117.
Gorno‐Tempini ML, Hillis AE, Weintraub S, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76:1006‐1014.
Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134:2456‐2477.
Knopman DS, Kramer JH, Boeve BF, et al. Development of methodology for conducting clinical trials in frontotemporal lobar degeneration. Brain. 2008;131:2957‐2968.
Wear HJ, Wedderburn CJ, Mioshi E, et al. The Cambridge Behavioural Inventory revised. Dement Neuropsychol. 2008;2:102‐107.
Morris JC, Weintraub S, Chui HC, et al. The Uniform Data Set (UDS): clinical and cognitive variables and descriptive data from Alzheimer Disease Centers. Alzheimer Dis Assoc Disord. 2006;20:210‐216.
Corrigan JD, Hinkeldey NS. Relationships between parts A and B of the Trail Making Test. J Clin Psychol. 1987;43:402‐409.
Delis DC, Kaplan E, Kramer JH. Delis Kaplan Executive Function System. San Antonio, TX: The Psychological Corporation; 2001.
Moore K, Convery R, Bocchetta M, et al. A modified Camel and Cactus Test detects presymptomatic semantic impairment in genetic frontotemporal dementia within the GENFI cohort. Appl Neuropsychol Adult. 2022;29:112‐119.
Tombaugh TN, Kozak J, Rees L. Normative data stratified by age and education for two measures of verbal fluency: FAS and animal naming. Arch Clin Neuropsychol. 1999;14:167‐177.
Poos JM, Russell LL, Peakman G, et al. Impairment of episodic memory in genetic frontotemporal dementia: a GENFI study. Alzheimers Dement (Amst). 2021;13:e12185.
Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007;38:95‐113.
Mutsaerts H, Petr J, Thomas DL, et al. Comparison of arterial spin labeling registration strategies in the multi‐center GENetic frontotemporal dementia initiative (GENFI). J Magn Reson Imaging. 2018;47:131‐140.
Mutsaerts H, Petr J, Groot P, et al. ExploreASL: an image processing pipeline for multi‐center ASL perfusion MRI studies. Neuroimage. 2020;219:117031.
Mutsaerts HJ, Petr J, Vaclavu L, et al. The spatial coefficient of variation in arterial spin labeling cerebral blood flow images. J Cereb Blood Flow Metab. 2017;37:3184‐3192.
Asllani I, Borogovac A, Brown TR. Regression algorithm correcting for partial volume effects in arterial spin labeling MRI. Magn Reson Med. 2008;60:1362‐1371.
Pasternak M, Mirza SS, Luciw N, et al. Longitudinal cerebral perfusion in presymptomatic genetic frontotemporal dementia: GENFI results. Alzheimers Dement. 2024;20:3525‐3542.
Li H, Smith SM, Gruber S, et al. Denoising scanner effects from multimodal MRI data using linked independent component analysis. Neuroimage. 2020;208:116388.
Chen J, Liu J, Calhoun VD, et al. Exploration of scanning effects in multi‐site structural MRI studies. J Neurosci Methods. 2014;230:37‐50.
Ashburner J, Friston KJ. Diffeomorphic registration using geodesic shooting and Gauss–Newton optimisation. Neuroimage. 2011;55:954‐967.
Shirzadi Z, Crane DE, Robertson AD, et al. Automated removal of spurious intermediate cerebral blood flow volumes improves image quality among older patients: a clinical arterial spin labeling investigation. J Magn Reson Imaging. 2015;42:1377‐1385.
Alsop DC, Detre JA, Golay X, et al. Recommended implementation of arterial spin‐labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med. 2015;73:102‐116.
Cusack R, Vicente‐Grabovetsky A, Mitchell DJ, et al. Automatic analysis (aa): efficient neuroimaging workflows and parallel processing using Matlab and XML. Front Neuroinform. 2014;8:90.
Pruim RHR, Mennes M, van Rooij D, Llera A, Buitelaar JK, Beckmann CF. ICA‐AROMA: a robust ICA‐based strategy for removing motion artifacts from fMRI data. Neuroimage. 2015;112:267‐277.
Geerligs L, Tsvetanov KA, Cam C, Henson RN. Challenges in measuring individual differences in functional connectivity using fMRI: the case of healthy aging. Hum Brain Mapp. 2017;38:4125‐4156.
Calhoun VD, Adali T, Pearlson GD, Pekar JJ. A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp. 2001;14:140‐151.
McKeown MJ, Makeig S, Brown GG, et al. Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp. 1998;6:160‐188.
Beckmann CF, DeLuca M, Devlin JT, Smith SM. Investigations into resting‐state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci. 2005;360:1001‐1013.
Damoiseaux JS, Rombouts SA, Barkhof F, et al. Consistent resting‐state networks across healthy subjects. Proc Natl Acad Sci U S A. 2006;103:13848‐13853.
Smith SM, Fox PT, Miller KL, et al. Correspondence of the brain's functional architecture during activation and rest. Proc Natl Acad Sci USA. 2009;106:13040‐13045.
Himberg J, Hyvarinen A. Icasso: software for investigating the reliability of ICA estimates by clustering and visualization. 2003 IEEE XIII Workshop on Neural Networks for Signal Processing. IEEE; 2003:259‐268. Cat No03TH8718.
Shirer WR, Ryali S, Rykhlevskaia E, Menon V, Greicius MD. Decoding subject‐driven cognitive states with whole‐brain connectivity patterns. Cereb Cortex. 2012;22:158‐165.
Liu X, Tyler LK, Cam CAN, Rowe JB, Tsvetanov KA. Multimodal fusion analysis of functional, cerebrovascular and structural neuroimaging in healthy aging subjects. Hum Brain Mapp. 2022;43:5490‐5508.
Passamonti L, Tsvetanov KA, Jones PS, et al. Neuroinflammation and functional connectivity in Alzheimer's disease: interactive influences on cognitive performance. J Neurosci. 2019;39:7218‐7226.
Pievani M, de Haan W, Wu T, Seeley WW, Frisoni GB. Functional network disruption in the degenerative dementias. Lancet Neurol. 2011;10:829‐843.
Snyder W, Uddin LQ, Nomi JS. Dynamic functional connectivity profile of the salience network across the life span. Hum Brain Mapp. 2021;42:4740‐4749.
Groves AR, Beckmann CF, Smith SM, Woolrich MW. Linked independent component analysis for multimodal data fusion. Neuroimage. 2011;54:2198‐2217.
Smith SM, Jenkinson M, Woolrich MW, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23(Suppl 1):S208‐S219.
Wilkinson GN, Rogers CE. Symbolic description of factorial models for analysis of variance. J R Stat Soc Ser C Appl Stat. 1973;22:392‐399.
Zhang N, Gordon ML, Goldberg TE. Cerebral blood flow measured by arterial spin labeling MRI at resting state in normal aging and Alzheimer's disease. Neurosci Biobehav Rev. 2017;72:168‐175.
Mokhber N, Shariatzadeh A, Avan A. Cerebral blood flow changes during aging process and in cognitive disorders: a review. Neuroradiol J. 2021;34:300‐307.
Damoiseaux JS, Beckmann CF, Arigita EJ, et al. Reduced resting‐state brain activity in the “default network” in normal aging. Cereb Cortex. 2008;18:1856‐1864.
Douaud G, Groves AR, Tamnes CK, et al. A common brain network links development, aging, and vulnerability to disease. Proc Natl Acad Sci USA. 2014;111:17648‐17653.
Kennedy KM, Raz N. Normal aging of the brain. In: Toga AW, ed. Brain Mapping. Academic Press; 2015:603‐617.
Fumagalli GG, Basilico P, Arighi A, et al. Distinct patterns of brain atrophy in Genetic Frontotemporal Dementia Initiative (GENFI) cohort revealed by visual rating scales. Alzheimers Res Ther. 2018;10:46.
Peelle JE, Cusack R, Henson RN. Adjusting for global effects in voxel‐based morphometry: gray matter decline in normal aging. Neuroimage. 2012;60:1503‐1516.
Zhou J, Greicius MD, Gennatas ED, et al. Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer's disease. Brain. 2010;133:1352‐1367.
Whitwell JL, Josephs KA, Avula R, et al. Altered functional connectivity in asymptomatic MAPT subjects: a comparison to bvFTD. Neurology. 2011;77:866‐874.
Ferguson HJ, Brunsdon VEA, Bradford EEF. The developmental trajectories of executive function from adolescence to old age. Sci Rep. 2021;11:1382.
Salthouse T. Consequences of age‐related cognitive declines. Annu Rev Psychol. 2012;63:201‐226.
Poos JM, MacDougall A, van den Berg E, et al. Longitudinal cognitive changes in genetic frontotemporal dementia within the GENFI cohort. Neurology. 2022;99:e281‐e295.
Adnan A, Beaty R, Lam J, Spreng RN, Turner GR. Intrinsic default‐executive coupling of the creative aging brain. Soc Cogn Affect Neurosci. 2019;14:291‐303.
Kupis L, Goodman ZT, Kornfeld S, et al. Brain dynamics underlying cognitive flexibility across the lifespan. Cereb Cortex. 2021;31:5263‐5274.
Rohrer JD. Structural brain imaging in frontotemporal dementia. Biochim Biophys Acta. 2012;1822:325‐332.
Borroni B, Alberici A, Cercignani M, et al. Granulin mutation drives brain damage and reorganization from preclinical to symptomatic FTLD. Neurobiol Aging. 2012;33:2506‐2520.
Rohrer JD, Warren JD, Modat M, et al. Patterns of cortical thinning in the language variants of frontotemporal lobar degeneration. Neurology. 2009;72:1562‐1569.
Ramanan S, Halai AD, Garcia‐Penton L, et al. The neural substrates of transdiagnostic cognitive‐linguistic heterogeneity in primary progressive aphasia. Alzheimers Res Ther. 2023;15:219.
Mesulam MM. From sensation to cognition. Brain. 1998;121:1013‐1052.
Friedman NP, Robbins TW. The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology. 2022;47:72‐89.
Murley AG, Rowe JB. Neurotransmitter deficits from frontotemporal lobar degeneration. Brain. 2018;141:1263‐1285.
Hedden T, Van Dijk KR, Becker JA, et al. Disruption of functional connectivity in clinically normal older adults harboring amyloid burden. J Neurosci. 2009;29:12686‐12694.
Gabrielyan M, Tisdall MD, Kammer C, Higgins C, Arratia PE, Detre JA. A perfusion phantom for ASL MRI based on impinging jets. Magn Reson Med. 2021;86:1145‐1158.
Adebimpe A, Bertolero M, Dolui S, et al. ASLPrep: a platform for processing of arterial spin labeled MRI and quantification of regional brain perfusion. Nat Methods. 2022;19:683‐686.
Benussi A, Premi E, Grassi M, et al. Diagnostic accuracy of research criteria for prodromal frontotemporal dementia. Alzheimers Res Ther. 2024;16:10.
Tsvetanov KA, Ye Z, Hughes L, et al. Activity and connectivity differences underlying inhibitory control across the adult life span. J Neurosci. 2018;38:7887‐7900.

Auteurs

Xulin Liu (X)

Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK.

Peter Simon Jones (PS)

Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK.

Maurice Pasternak (M)

Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada.
University of Toronto, Toronto, Canada.

Mario Masellis (M)

Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada.
University of Toronto, Toronto, Canada.

Arabella Bouzigues (A)

Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.

Lucy L Russell (LL)

Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.

Phoebe H Foster (PH)

Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.

Eve Ferry-Bolder (E)

Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.

John van Swieten (J)

Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands.

Lize Jiskoot (L)

Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands.

Harro Seelaar (H)

Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands.

Raquel Sanchez-Valle (R)

Alzheimer's disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain.

Robert Laforce (R)

Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Université Laval, Québec, Canada.

Caroline Graff (C)

Karolinska Institute, Department NVS, Centre for Alzheimer Research, Division of Neurogenetics, Stockholm, Sweden.
Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Stockholm, Sweden.

Daniela Galimberti (D)

Fondazione IRCCS Ospedale Policlinico, Milan, Italy.
Centro Dino Ferrari, University of Milan, Milan, Italy.

Rik Vandenberghe (R)

Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium.
Neurology Service, University Hospitals Leuven, Leuven, Belgium.

Alexandre de Mendonça (A)

Faculty of Medicine, University of Lisbon, Lisbon, Portugal.

Pietro Tiraboschi (P)

Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy.

Isabel Santana (I)

Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
Centre of Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal.

Alexander Gerhard (A)

Division of Psychology Communication and Human Neuroscience, Wolfson Molecular Imaging Centre, University of Manchester, First floor, Core Technology Facility, Manchester, UK.
Department of Nuclear Medicine, Centre for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany.
Department of Geriatric Medicine, Klinikum Hochsauerland, Arnsberg, Germany.

Johannes Levin (J)

Department of Neurology, Ludwig-Maximilians Universität München, Munich, Germany.
Centre for Neurodegenerative Diseases (DZNE), Munich, Germany.
Munich Cluster of Systems Neurology, Munich, Germany.

Sandro Sorbi (S)

Department of Neurofarba, University of Florence, Firenze, Italy.
IRCCS Fondazione Don Carlo Gnocchi, Florence, Firenze, Italy.

Markus Otto (M)

Department of Neurology, University of Ulm, Ulm, Germany.

Florence Pasquier (F)

University Lille, Lille, France.
Inserm 1172, Lille, France.
CHU, CNR-MAJ, Labex Distalz, LiCEND Lille, Lille, France.

Simon Ducharme (S)

Department of Psychiatry, McGill University Health Centre, McGill University, Montreal, Canada.
McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada.

Chris Butler (C)

Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK.
Department of Brain Sciences, Imperial College London, Burlington Danes, The Hammersmith Hospital, London, UK.

Isabelle Le Ber (I)

Paris Brain Institute - Institut du Cerveau - ICM, Sorbonne Université, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France.
Reference center for rare or early-onset dementias, IM2A, Department of Neurology, AP-HP - Pitié-Salpêtrière Hospital, Paris, France.
Department of Neurology, AP-HP - Pitié-Salpêtrière Hospital, Paris, France.

Elizabeth Finger (E)

Department of Clinical Neurological Sciences, University of Western Ontario, London, Canada.

Maria Carmela Tartaglia (MC)

Tanz Centre for Research in Neurodegenerative Disease, Toronto Western Hospital, Toronto, Ontario, Canada.

Matthis Synofzik (M)

Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research & Centre of Neurology, University of Tübingen, Tübingen, Germany.
Centre for Neurodegenerative Diseases (DZNE), Tübingen, Germany.

Fermin Moreno (F)

Cognitive Disorders Unit, Department of Neurology, Hospital Universitario Donostia, San Sebastian, Gipuzkoa, Spain.
Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain.

Barbara Borroni (B)

Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.

Jonathan D Rohrer (JD)

Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.

Kamen A Tsvetanov (KA)

Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK.
Department of Psychology, University of Cambridge, Cambridge, UK.

James B Rowe (JB)

Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK.
MRC Cognition and Brain Science Unit, University of Cambridge, Cambridge, UK.

Classifications MeSH