A self-regulated expiratory flow device for mechanical ventilation: a bench study.

Energy dissipation Expiratory resistive load Flow-controlled expiration Mandatory ventilation

Journal

Intensive care medicine experimental
ISSN: 2197-425X
Titre abrégé: Intensive Care Med Exp
Pays: Germany
ID NLM: 101645149

Informations de publication

Date de publication:
16 Oct 2024
Historique:
received: 16 05 2024
accepted: 03 10 2024
medline: 17 10 2024
pubmed: 17 10 2024
entrez: 16 10 2024
Statut: epublish

Résumé

Unregulated expiratory flow may contribute to ventilator-induced lung injury. The amount of energy dissipated into the lungs with tidal mechanical ventilation may be used to quantify potentially injurious ventilation. Previously reported devices for variable expiratory flow regulation (FLEX) require, either computer-controlled feedback, or an initial expiratory flow trigger. In this bench study we present a novel passive expiratory flow regulation device. The device was tested using a commercially available mechanical ventilator with a range of settings (tidal volume 420 ml and 630 ml, max. inspiratory flow rate 30 L/min and 50 L/min, respiratory rate 10 min Maximal and minimal reduction in peak expiratory flow was from 97.18 ± 0.41 L/min to 25.82 ± 0.07 L/min (p < 0.001), and from 44.11 ± 0.42 L/min to 26.30 ± 0.06 L/min, respectively. Maximal prolongation in expiratory time was recorded from 1.53 ± 0.06 s to 3.64 ± 0.21 s (p < 0.001). As a result of the extended expiration, the maximal decrease in I:E ratio was from 1:1.15 ± 0.03 to 1:2.45 ± 0.01 (p < 0.001). The greatest increase in mean airway pressure was from 10.04 ± 0.03 cmH The device bench tested in this study demonstrated a significant reduction in peak expiratory flow rate and dissipated energy, compared to ventilation with unregulated expiratory flow. Application of the device warrants further experimental and clinical evaluation.

Identifiants

pubmed: 39414708
doi: 10.1186/s40635-024-00681-0
pii: 10.1186/s40635-024-00681-0
doi:

Types de publication

Journal Article

Langues

eng

Pagination

92

Informations de copyright

© 2024. The Author(s).

Références

Dreyfuss D, Saumon G (1998) Ventilator-induced Lung Injury: lessons from experimental studies. Am J Respir Crit Care Med 157(1):294–323. https://doi.org/10.1164/ajrccm.157.1.9604014
doi: 10.1164/ajrccm.157.1.9604014 pubmed: 9445314
Tonetti T, Vasques F, Rapetti F et al (2017) Driving pressure and mechanical power: new targets for VILI prevention. Ann Transl Med 5(14):286–286. https://doi.org/10.21037/atm.2017.07.08
doi: 10.21037/atm.2017.07.08 pubmed: 28828361 pmcid: 5537108
Gattinoni L, Tonetti T, Cressoni M et al (2016) Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med 42(10):1567–1575. https://doi.org/10.1007/s00134-016-4505-2
doi: 10.1007/s00134-016-4505-2 pubmed: 27620287
Bates JHT, Smith BJ (2018) Ventilator-induced lung injury and lung mechanics. Ann Transl Med 6(19):378–378. https://doi.org/10.21037/atm.2018.06.29
doi: 10.21037/atm.2018.06.29 pubmed: 30460252 pmcid: 6212358
Silva PL, Ball L, Rocco PRM, Pelosi P (2019) Power to mechanical power to minimize ventilator-induced lung injury? Intensive Care Med Exp 7(S1):38. https://doi.org/10.1186/s40635-019-0243-4
doi: 10.1186/s40635-019-0243-4 pubmed: 31346828 pmcid: 6658623
Busana M, Zinnato C, Romitti F et al (2022) Energy dissipation during expiration and ventilator-induced lung injury: an experimental animal study. J Appl Physiol 133(5):1212–1219. https://doi.org/10.1152/japplphysiol.00426.2022
doi: 10.1152/japplphysiol.00426.2022 pubmed: 36173324
Barnes T, Van Asseldonk D, Enk D (2018) Minimisation of dissipated energy in the airways during mechanical ventilation by using constant inspiratory and expiratory flows – flow-controlled ventilation (FCV). Med Hypotheses 121:167–176. https://doi.org/10.1016/j.mehy.2018.09.038
doi: 10.1016/j.mehy.2018.09.038 pubmed: 30396474
Borgmann S, Schmidt J, Goebel U, Haberstroh J, Guttmann J, Schumann S (2018) Dorsal recruitment with flow-controlled expiration (FLEX): an experimental study in mechanically ventilated lung-healthy and lung-injured pigs. Crit Care 22(1):245. https://doi.org/10.1186/s13054-018-2168-9
doi: 10.1186/s13054-018-2168-9 pubmed: 30268138 pmcid: 6162883
Katira BH, Engelberts D, Otulakowski G et al (2018) Abrupt deflation after sustained inflation causes lung injury. Am J Respir Crit Care Med 198(9):1165–1176. https://doi.org/10.1164/rccm.201801-0178OC
doi: 10.1164/rccm.201801-0178OC pubmed: 29902384
Goebel U, Haberstroh J, Foerster K et al (2014) Flow-controlled expiration: a novel ventilation mode to attenuate experimental porcine lung injury. Br J Anaesth 113(3):474–483. https://doi.org/10.1093/bja/aeu058
doi: 10.1093/bja/aeu058 pubmed: 24694683
Schmidt J, Wenzel C, Spassov S et al (2020) Flow-controlled ventilation attenuates lung injury in a porcine model of acute respiratory distress syndrome: a preclinical randomized controlled study. Crit Care Med 48(3):e241–e248. https://doi.org/10.1097/CCM.0000000000004209
doi: 10.1097/CCM.0000000000004209 pubmed: 31856000 pmcid: 7017946
Schumann S, Goebel U, Haberstroh J et al (2014) Determination of respiratory system mechanics during inspiration and expiration by FLow-controlled EXpiration (FLEX): a pilot study in anesthetized pigs. Minerva Anestesiol 80(1):19–28
pubmed: 24193175
Aerts J, Van Den Berg B, Bogaard J (1997) Controlled expiration in mechanically-ventilated patients with chronic obstructive pulmonary disease (COPD). Eur Respir J 10(3):550–556. https://doi.org/10.1183/09031936.97.10030550
doi: 10.1183/09031936.97.10030550 pubmed: 9072983
Barnes T, Enk D (2019) Ventilation for low dissipated energy achieved using flow control during both inspiration and expiration. Trends Anaesth Crit Care 24:5–12. https://doi.org/10.1016/j.tacc.2018.09.003
doi: 10.1016/j.tacc.2018.09.003
Schmidt J, Martin A, Wenzel C, Weber J, Wirth S, Schumann S (2021) Control of the expiratory flow in a lung model and in healthy volunteers with an adjustable flow regulator: a combined bench and randomized crossover study. Respir Res 22(1):292. https://doi.org/10.1186/s12931-021-01886-7
doi: 10.1186/s12931-021-01886-7 pubmed: 34775965 pmcid: 8590868
Harris RS (2005) Pressure-volume curves of the respiratory system. Respir Care 50(1):78–99
pubmed: 15636647
Gammage GW, Banner MJ, Blanch PB, Kirby RR (1988) Ventilator displayed tidal volume—what you see may not be what you get. Crit Care Med 16(4):454
doi: 10.1097/00003246-198804000-00188
Cannon ML, Cornell J, Tripp-Hamel DS et al (2000) Tidal volumes for ventilated infants should be determined with a pneumotachometer placed at the endotracheal tube. Am J Respir Crit Care Med 162(6):2109–2112. https://doi.org/10.1164/ajrccm.162.6.9906112
doi: 10.1164/ajrccm.162.6.9906112 pubmed: 11112123
Van Oosten JP, Francovich JE, Somhorst P et al (2024) Flow-controlled ventilation decreases mechanical power in postoperative ICU patients. Intensive Care Med Exp 12(1):30. https://doi.org/10.1186/s40635-024-00616-9
doi: 10.1186/s40635-024-00616-9 pubmed: 38502268 pmcid: 10951187
Wirth S, Springer S, Spaeth J, Borgmann S, Goebel U, Schumann S (2017) Application of the novel ventilation mode FLow-Controlled EXpiration (FLEX): a crossover proof-of-principle study in lung-healthy patients. Anesth Analg 125(4):1246–1252. https://doi.org/10.1213/ANE.0000000000001991
doi: 10.1213/ANE.0000000000001991 pubmed: 28368939
Georgopoulos D, Mitrouska I, Markopoulou K, Patakas D, Anthonisen NR (1995) Effects of breathing patterns on mechanically ventilated patients with chronic obstructive pulmonary disease and dynamic hyperinflation. Intensive Care Med 21(11):880–886. https://doi.org/10.1007/BF01712328
doi: 10.1007/BF01712328 pubmed: 8636519
Marini JJ (2011) Dynamic hyperinflation and auto-positive end-expiratory pressure: lessons learned over 30 years. Am J Respir Crit Care Med 184(7):756–762. https://doi.org/10.1164/rccm.201102-0226PP
doi: 10.1164/rccm.201102-0226PP pubmed: 21700908
Bialka S, Palaczynski P, Szuldrzynski K et al (2022) Flow-controlled ventilation – a new and promising method of ventilation presented with a review of the literature. Anaesthesiol Intensive Ther 54(1):62–70. https://doi.org/10.5114/ait.2022.112889
doi: 10.5114/ait.2022.112889 pubmed: 35142160 pmcid: 10156500

Auteurs

Lianye Yang (L)

Biomedical Engineering Department, Flinders Medical Centre, South Adelaide Local Health Network, Adelaide, SA, Australia.

Ubbo F Wiersema (UF)

Intensive and Critical Care Unit, Flinders Medical Centre, South Adelaide Local Health Network, Flinders Lane, Bedford Park, Adelaide, SA, 5042, Australia.

Shailesh Bihari (S)

Intensive and Critical Care Unit, Flinders Medical Centre, South Adelaide Local Health Network, Flinders Lane, Bedford Park, Adelaide, SA, 5042, Australia. Shailesh.Bihari@sa.gov.au.
College of Medicine and Public Health, Flinders University, Adelaide, Australia. Shailesh.Bihari@sa.gov.au.

Roy Broughton (R)

Biomedical Engineering Department, Flinders Medical Centre, South Adelaide Local Health Network, Adelaide, SA, Australia.

Andy Roberts (A)

Biomedical Engineering Department, Flinders Medical Centre, South Adelaide Local Health Network, Adelaide, SA, Australia.

Nigel Kelley (N)

Biomedical Engineering Department, Flinders Medical Centre, South Adelaide Local Health Network, Adelaide, SA, Australia.

Mark McEwen (M)

Biomedical Engineering Department, Flinders Medical Centre, South Adelaide Local Health Network, Adelaide, SA, Australia.

Classifications MeSH