Exploring the unfolding pathways of protein families using Elastic Network Model.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
13 Oct 2024
Historique:
received: 19 04 2024
accepted: 04 10 2024
medline: 14 10 2024
pubmed: 14 10 2024
entrez: 13 10 2024
Statut: epublish

Résumé

We explore how a protein's native structure determines its unfolding process. We examine how the local structural features, like shear, and the global structural properties, like the number of soft modes, change during unfolding. Simulations are performed using a Gaussian Network Model (GNM) with bond breaking for both thermal and force-induced unfolding scenarios. We find that unfolding starts in areas of high shear in the native structure and progressively spreads to the low shear regions. Interestingly, analysis of single domain protein families (Chymotrypsin inhibitor and Barnase) reveal that proteins with distinct unfolding pathways exhibit divergent behavior of the number of soft modes during unfolding. This suggests that the number of soft modes might be a valuable tool for understanding thermal unfolding pathways. Additionally, we found a strong link between a protein's overall structural similarity (TM-score) and its unfolding pathways, highlighting the importance of the native structure in determining how a protein unfolds.

Identifiants

pubmed: 39397155
doi: 10.1038/s41598-024-75436-8
pii: 10.1038/s41598-024-75436-8
doi:

Substances chimiques

Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

23905

Informations de copyright

© 2024. The Author(s).

Références

Onuchic, J. N., Luthey-Schulten, Z. & Wolynes, P. G. Theory of protein folding: the energy landscape perspective. Annu Rev Phys Chem 48, 545–600 (1997).
pubmed: 9348663 doi: 10.1146/annurev.physchem.48.1.545
Lu, H., Isralewitz, B., Krammer, A., Vogel, V. & Schulten, K. Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys J. 75, 662–671 (1998).
pubmed: 9675168 pmcid: 1299741 doi: 10.1016/S0006-3495(98)77556-3
Habibi, M., Rottler, J. & Plotkin, S. S. As simple as possible, but not simpler: exploring the fidelity of coarse-grained protein models for simulated force spectroscopy. PLoS Comput Biol. 12, e1005211 (2016).
pubmed: 27898663 pmcid: 5127490 doi: 10.1371/journal.pcbi.1005211
Kouza, M., Hu, C.-K., Li, M. S. & Kolinski, A. A structure-based model fails to probe the mechanical unfolding pathways of the titin i27 domain. J. Chem. Phys. 139 (2013).
Sotomayor, M. & Schulten, K. Single-molecule experiments in vitro and in silico. Science 316, 1144–1148 (2007).
pubmed: 17525328 doi: 10.1126/science.1137591
Brockwell, D. J. et al. Pulling geometry defines the mechanical resistance of a β-sheet protein. Nat Struct Mol Biol. 10, 731–737 (2003).
doi: 10.1038/nsb968
Carrion-Vazquez, M. et al. The mechanical stability of ubiquitin is linkage dependent. NNat Struct Mol Biol. 10, 738–743 (2003).
doi: 10.1038/nsb965
Daura, X., Jaun, B., Seebach, D., Van Gunsteren, W. F. & Mark, A. E. Reversible peptide folding in solution by molecular dynamics simulation. J Mol Biol. 280, 925–932 (1998).
pubmed: 9671560 doi: 10.1006/jmbi.1998.1885
Shea, J.-E. & Brooks, C. L. III. From folding theories to folding proteins: a review and assessment of simulation studies of protein folding and unfolding. Annu Rev Phys Chem. 52, 499–535 (2001).
pubmed: 11326073 doi: 10.1146/annurev.physchem.52.1.499
Zhuravlev, P. I., Reddy, G., Straub, J. E. & Thirumalai, D. Propensity to form amyloid fibrils is encoded as excitations in the free energy landscape of monomeric proteins. J Mol Biol. 426, 2653–2666 (2014).
pubmed: 24846645 pmcid: 4100209 doi: 10.1016/j.jmb.2014.05.007
Greenfield, N. J. Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nature protocols 1, 2527–2535 (2006).
pubmed: 17406506 pmcid: 2752288 doi: 10.1038/nprot.2006.204
Eftink, M. R. The use of fluorescence methods to monitor unfolding transitions in proteins. Biophys J. 66, 482–501 (1994).
pubmed: 8161701 pmcid: 1275715 doi: 10.1016/S0006-3495(94)80799-4
Schuler, B. & Hofmann, H. Single-molecule spectroscopy of protein folding dynamics-expanding scope and timescales. Curr Opin Struct Biol. 23, 36–47 (2013).
pubmed: 23312353 doi: 10.1016/j.sbi.2012.10.008
Schuler, B. & Eaton, W. A. Protein folding studied by single-molecule fret. Curr Opin Struct Biol. 18, 16–26 (2008).
pubmed: 18221865 pmcid: 2323684 doi: 10.1016/j.sbi.2007.12.003
Mojumdar, S. S. et al. Multiple intermediates in the folding of superoxide dismutase 1 revealed by single molecule force spectroscopy. Biophys J. 110, 497a (2016).
doi: 10.1016/j.bpj.2015.11.2657
Habibi, M., Rottler, J. & Plotkin, S. S. The unfolding mechanism of monomeric mutant sod1 by simulated force spectroscopy. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 1865, 1631–1642 (2017).
Lipfert, J. & Doniach, S. Small-angle x-ray scattering from rna, proteins, and protein complexes. Annu. Rev. Biophys. Biomol. Struct. 36, 307–327 (2007).
pubmed: 17284163 doi: 10.1146/annurev.biophys.36.040306.132655
Dyson, H. J. & Wright, P. E. Unfolded proteins and protein folding studied by nmr. Chem Rev. 104, 3607–3622 (2004).
pubmed: 15303830 doi: 10.1021/cr030403s
Sułkowska, J. I., Kloczkowski, A., Sen, T. Z., Cieplak, M. & Jernigan, R. L. Predicting the order in which contacts are broken during single molecule protein stretching experiments. Proteins: Structure, Function, and Bioinformatics 71, 45–60 (2008).
Toofanny, R. D. & Daggett, V. Understanding protein unfolding from molecular simulations. WIREs Computational Molecular Science. 2, 405–423. https://doi.org/10.1002/wcms.1088 .
Alm, E. & Baker, D. Matching theory and experiment in protein folding. Curr Opin Struct Biol. 9, 189–196 (1999).
pubmed: 10322214 doi: 10.1016/S0959-440X(99)80027-X
Alm, E. & Baker, D. Prediction of protein-folding mechanisms from free-energy landscapes derived from native structures. Proceedings of the National Academy of Sciences 96, 11305–11310 (1999).
doi: 10.1073/pnas.96.20.11305
Perl, D. et al. Conservation of rapid two-state folding in mesophilic, thermophilic and hyperthermophilic cold shock proteins. Nat Struct Biol. 5, 229–235 (1998).
pubmed: 9501917 doi: 10.1038/nsb0398-229
Rader, A., Hespenheide, B. M., Kuhn, L. A. & Thorpe, M. F. Protein unfolding: rigidity lost. Proceedings of the National Academy of Sciences 99, 3540–3545 (2002).
doi: 10.1073/pnas.062492699
Jacobs, D. J., Rader, A., Kuhn, L. A. & Thorpe, M. Protein flexibility predictions using graph theory. Proteins: Structure, Function, and Bioinformatics. 44, 150–165. https://doi.org/10.1002/prot.1081 .
Habibi, M., Plotkin, S. S. & Rottler, J. Soft vibrational modes predict breaking events during force-induced protein unfolding. Biophy J. 114, 562–569 (2018).
doi: 10.1016/j.bpj.2017.11.3781
Mitchell, M. R., Tlusty, T. & Leibler, S. Strain analysis of protein structures and low dimensionality of mechanical allosteric couplings. Proceedings of the National Academy of Sciences 113, E5847–E5855 (2016).
doi: 10.1073/pnas.1609462113
Dutta, S., Eckmann, J.-P., Libchaber, A. & Tlusty, T. Green function of correlated genes in a minimal mechanical model of protein evolution. Proceedings of the National Academy of Sciences 115, E4559–E4568 (2018).
doi: 10.1073/pnas.1716215115
Sartori, P. & Leibler, S. Evolutionary conservation of mechanical strain distributions in functional transitions of protein structures. bioRxiv 2023–02 (2023).
Widmer-Cooper, A., Perry, H., Harrowell, P. & Reichman, D. R. Irreversible reorganization in a supercooled liquid originates from localized soft modes. Nature Physics 4, 711–715 (2008).
doi: 10.1038/nphys1025
Tanguy, A., Mantisi, B. & Tsamados, M. Vibrational modes as a predictor for plasticity in a model glass. Europhys Lett. 90, 16004 (2010).
doi: 10.1209/0295-5075/90/16004
Manning, M. L. & Liu, A. J. Vibrational modes identify soft spots in a sheared disordered packing. Phys Rev Lett. 107, 108302 (2011).
pubmed: 21981537 doi: 10.1103/PhysRevLett.107.108302
Smessaert, A. & Rottler, J. Structural relaxation in glassy polymers predicted by soft modes: a quantitative analysis. Soft Matter 10, 8533–8541 (2014).
pubmed: 25241966 doi: 10.1039/C4SM01438C
Smessaert, A. & Rottler, J. Correlation between rearrangements and soft modes in polymer glasses during deformation and recovery. Physical Review E 92, 052308 (2015).
doi: 10.1103/PhysRevE.92.052308
Sastry, S., Debenedetti, P. G. & Stillinger, F. H. Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid. Nature 393, 554–557 (1998).
doi: 10.1038/31189
Wang, J., Plotkin, S. S. & Wolynes, P. G. Configurational diffusion on a locally connected correlated energy landscape; application to finite, random heteropolymers. Journal de Physique I(7), 395–421 (1997).
Schweizer, K. S. & Saltzman, E. J. Entropic barriers, activated hopping, and the glass transition in colloidal suspensions. J Chem Phys. 119, 1181–1196 (2003).
doi: 10.1063/1.1578632
Bhattacharyya, S. M., Bagchi, B. & Wolynes, P. G. Facilitation, complexity growth, mode coupling, and activated dynamics in supercooled liquids. Proceedings of the National Academy of Sciences 105, 16077–16082 (2008).
doi: 10.1073/pnas.0808375105
Spaepen, F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta metallurgica 25, 407–415 (1977).
doi: 10.1016/0001-6160(77)90232-2
Langer, J. Microstructural shear localization in plastic deformation of amorphous solids. Physical Review E 64, 011504 (2001).
doi: 10.1103/PhysRevE.64.011504
Dasgupta, R., Hentschel, H. G. E. & Procaccia, I. Microscopic mechanism of shear bands in amorphous solids. Phys Rev Lett. 109, 255502 (2012).
pubmed: 23368479 doi: 10.1103/PhysRevLett.109.255502
Wisitsorasak, A. & Wolynes, P. G. Dynamical theory of shear bands in structural glasses. Proceedings of the National Academy of Sciences 114, 1287–1292 (2017).
doi: 10.1073/pnas.1620399114
Su, J. G., Li, C. H., Hao, R., Zu Chen, W. & Wang, C. X. Protein unfolding behavior studied by elastic network model. Biophys. J. 94, 4586–4596 (2008).
Haliloglu, T., Bahar, I. & Erman, B. Gaussian dynamics of folded proteins. Phys Rev Lett. 79, 3090 (1997).
doi: 10.1103/PhysRevLett.79.3090
Bahar, I., Atilgan, A. R. & Erman, B. Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Folding and Design 2, 173–181 (1997).
pubmed: 9218955 doi: 10.1016/S1359-0278(97)00024-2
Eyal, E. & Bahar, I. Toward a molecular understanding of the anisotropic response of proteins to external forces: insights from elastic network models. Biophy J. 94, 3424–3435 (2008).
doi: 10.1529/biophysj.107.120733
Chennubhotla, C., Rader, A., Yang, L.-W. & Bahar, I. Elastic network models for understanding biomolecular machinery: from enzymes to supramolecular assemblies. Phys Biol. 2, S173 (2005).
pubmed: 16280623 doi: 10.1088/1478-3975/2/4/S12
Tama, F. & Sanejouand, Y.-H. Conformational change of proteins arising from normal mode calculations. Protein engineering 14, 1–6 (2001).
pubmed: 11287673 doi: 10.1093/protein/14.1.1
Yang, L., Song, G. & Jernigan, R. L. How well can we understand large-scale protein motions using normal modes of elastic network models?. Biophy J. 93, 920–929 (2007).
doi: 10.1529/biophysj.106.095927
Delarue, M. & Sanejouand, Y.-H. Simplified normal mode analysis of conformational transitions in dna-dependent polymerases: the elastic network model. J Mol Biol. 320, 1011–1024 (2002).
pubmed: 12126621 doi: 10.1016/S0022-2836(02)00562-4
Srivastava, A. & Granek, R. Cooperativity in thermal and force-induced protein unfolding: integration of crack propagation and network elasticity models. Phys Rev Lett. 110, 138101 (2013).
pubmed: 23581376 doi: 10.1103/PhysRevLett.110.138101
Guest, W. C., Cashman, N. R. & Plotkin, S. S. A theory for the anisotropic and inhomogeneous dielectric properties of proteins. Phys Chem Chem Phys. 13, 6286–6295 (2011).
pubmed: 21359369 doi: 10.1039/c0cp02061c
Eyal, E., Yang, L.-W. & Bahar, I. Anisotropic network model: systematic evaluation and a new web interface. Bioinfo 22, 2619–2627 (2006).
Atilgan, A. R. et al. Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophy J. 80, 505–515 (2001).
doi: 10.1016/S0006-3495(01)76033-X
Zhang, H., Jiang, T., Shan, G., Xu, S. & Song, Y. Gaussian network model can be enhanced by combining solvent accessibility in proteins. Sci. Rep. 7, 7486. https://doi.org/10.1038/s41598-017-07677-9 .
Dietz, H. & Rief, M. Elastic bond network model for protein unfolding mechanics. Phys. Rev. Lett. 100, 098101. https://doi.org/10.1103/PhysRevLett.100.098101 .
Tirion, M. M. Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys Rev Lett. 77, 1905 (1996).
pubmed: 10063201 doi: 10.1103/PhysRevLett.77.1905
Srivastava, A. & Granek, R. Protein unfolding from free-energy calculations: Integration of the gaussian network model with bond binding energies. Phys. Rev. E. 91, 022708. https://doi.org/10.1103/PhysRevE.91.022708 .
Micheletti, C., Carloni, P. & Maritan, A. Accurate and efficient description of protein vibrational dynamics: comparing molecular dynamics and gaussian models. Proteins: Structure, Function, and Bioinformatics 55, 635–645 (2004).
doi: 10.1002/prot.20049
Doruker, P., Atilgan, A. R. & Bahar, I. Dynamics of proteins predicted by molecular dynamics simulations and analytical approaches: Application to α-amylase inhibitor. Proteins: Structure, Function, and Bioinformatics 40, 512–524 (2000).
doi: 10.1002/1097-0134(20000815)40:3<512::AID-PROT180>3.0.CO;2-M
Atilgan, C. & Atilgan, A. R. Perturbation-response scanning reveals ligand entry-exit mechanisms of ferric binding protein. PLoS Comput Biol. 5, e1000544 (2009).
pubmed: 19851447 pmcid: 2758672 doi: 10.1371/journal.pcbi.1000544
Gullett, P. M., Horstemeyer, M. F., Baskes, M. I. & Fang, H. A deformation gradient tensor and strain tensors for atomistic simulations. Model. Simulat. Mat. Sci. Eng. 16, 015001. https://doi.org/10.1088/0965-0393/16/1/015001 .
Zhang, Y. & Skolnick, J. Tm-align: a protein structure alignment algorithm based on the tm-score. Nucleic Acids Res. 33, 2302–2309 (2005).
pubmed: 15849316 pmcid: 1084323 doi: 10.1093/nar/gki524
Baker, D. A surprising simplicity to protein folding. Nature 405, 39–42 (2000).
pubmed: 10811210 doi: 10.1038/35011000
Mu noz, V. & Eaton, W. A. A simple model for calculating the kinetics of protein folding from three-dimensional structures. Proceed. Nat. Acad. Sci. 96, 11311–11316 (1999).

Auteurs

Ranjan Kumar (R)

Department of Physics, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India.

Sandipan Dutta (S)

Department of Physics, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India. sandipan.dutta@pilani.bits-pilani.ac.in.

Articles similaires

Databases, Protein Protein Domains Protein Folding Proteins Deep Learning
alpha-Synuclein Humans Animals Mice Lewy Body Disease

Mutational analysis of Phanerochaete chrysosporium´s purine transporter.

Mariana Barraco-Vega, Manuel Sanguinetti, Gabriela da Rosa et al.
1.00
Phanerochaete Fungal Proteins Purines Aspergillus nidulans DNA Mutational Analysis

Structural basis for molecular assembly of fucoxanthin chlorophyll

Koji Kato, Yoshiki Nakajima, Jian Xing et al.
1.00
Diatoms Photosystem I Protein Complex Chlorophyll Binding Proteins Cryoelectron Microscopy Light-Harvesting Protein Complexes

Classifications MeSH