Moiré-engineered light-matter interactions in MoS


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
09 Oct 2024
Historique:
received: 10 04 2024
accepted: 26 09 2024
medline: 10 10 2024
pubmed: 10 10 2024
entrez: 9 10 2024
Statut: epublish

Résumé

Moiré superlattices in van der Waals heterostructures represent a highly tunable quantum system, attracting substantial interest in both many-body physics and device applications. However, the influence of the moiré potential on light-matter interactions at room temperature has remained largely unexplored. In our study, we demonstrate that the moiré potential in MoS

Identifiants

pubmed: 39384821
doi: 10.1038/s41467-024-53083-x
pii: 10.1038/s41467-024-53083-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

8762

Subventions

Organisme : Danmarks Grundforskningsfond (Danish National Research Foundation)
ID : DNRF103

Informations de copyright

© 2024. The Author(s).

Références

Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).
doi: 10.1038/s41567-020-01154-3
Wilson, N. P., Yao, W., Shan, J. & Xu, X. Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature 599, 383–392 (2021).
doi: 10.1038/s41586-021-03979-1
Regan, E. C. et al. Emerging exciton physics in transition metal dichalcogenide heterobilayers. Nat. Rev. Mater. 7, 778–795 (2022).
doi: 10.1038/s41578-022-00440-1
Yan, X. et al. Moiré synaptic transistor with room-temperature neuromorphic functionality. Nature 624, 551–556 (2023).
doi: 10.1038/s41586-023-06791-1
Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).
doi: 10.1073/pnas.1108174108
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
doi: 10.1038/nature26160
Du, L. et al. Moiré photonics and optoelectronics. Science 379, eadg0014 (2023).
doi: 10.1126/science.adg0014
Rivera, P. et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 13, 1004–1015 (2018).
doi: 10.1038/s41565-018-0193-0
Liu, Y. et al. Interlayer excitons in transition metal dichalcogenide semiconductors for 2D optoelectronics. Adv. Mater. 34, 2107138 (2022).
doi: 10.1002/adma.202107138
Liu, Y. et al. Room temperature nanocavity laser with interlayer excitons in 2D heterostructures. Sci. Adv. 5, eaav4506 (2019).
doi: 10.1126/sciadv.aav4506
Paik, E. Y. et al. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature 576, 80–84 (2019).
doi: 10.1038/s41586-019-1779-x
Qian, C. et al. Lasing of moiré trapped mose2/wse2 interlayer excitons coupled to a nanocavity. Sci. Adv. 10, eadk6359 (2024).
doi: 10.1126/sciadv.adk6359
He, F. et al. Moiré patterns in 2D materials: a review. ACS Nano 15, 5944–5958 (2021).
doi: 10.1021/acsnano.0c10435
Li, H. et al. Imaging moiré flat bands in three-dimensional reconstructed WSe
doi: 10.1038/s41563-021-00923-6
Susarla, S. et al. Hyperspectral imaging of exciton confinement within a moiré unit cell with a subnanometer electron probe. Science 378, 1235–1239 (2022).
doi: 10.1126/science.add9294
Hagel, J., Brem, S., Pineiro, J. A. & Malic, E. Impact of atomic reconstruction on optical spectra of twisted tmd homobilayers. Phys. Rev. Mater. 8, 034001 (2024).
doi: 10.1103/PhysRevMaterials.8.034001
Yu, H., Liu, G.-B., Tang, J., Xu, X. & Yao, W. Moiré excitons: From programmable quantum emitter arrays to spin-orbit–coupled artificial lattices. Sci. Adv. 3, e1701696 (2017).
doi: 10.1126/sciadv.1701696
Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).
doi: 10.1038/s41586-019-0975-z
Jin, C. et al. Observation of moiré excitons in WSe
doi: 10.1038/s41586-019-0976-y
Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe
doi: 10.1038/s41586-019-0957-1
Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).
doi: 10.1038/s41586-019-0986-9
Karni, O. et al. Structure of the moiré exciton captured by imaging its electron and hole. Nature 603, 247–252 (2022).
doi: 10.1038/s41586-021-04360-y
Schmitt, D. et al. Formation of moiré interlayer excitons in space and time. Nature 608, 499–503 (2022).
doi: 10.1038/s41586-022-04977-7
Merkl, P. et al. Ultrafast transition between exciton phases in van der Waals heterostructures. Nat. Mater. 18, 691–696 (2019).
doi: 10.1038/s41563-019-0337-0
Jiang, Y., Chen, S., Zheng, W., Zheng, B. & Pan, A. Interlayer exciton formation, relaxation, and transport in TMD van der Waals heterostructures. Light. Sci. Appl. 10, 72 (2021).
doi: 10.1038/s41377-021-00500-1
Tan, Q., Rasmita, A., Zhang, Z., Novoselov, K. & Gao, W. Signature of cascade transitions between interlayer excitons in a moiré superlattice. Phys. Rev. Lett. 129, 247401 (2022).
doi: 10.1103/PhysRevLett.129.247401
Sun, X. et al. Enhanced interactions of interlayer excitons in free-standing heterobilayers. Nature 610, 478–484 (2022).
doi: 10.1038/s41586-022-05193-z
Karni, O. et al. Infrared interlayer exciton emission in MoS
doi: 10.1103/PhysRevLett.123.247402
Tan, Q. et al. Layer-engineered interlayer excitons. Sci. Adv. 7, eabh0863 (2021).
doi: 10.1126/sciadv.abh0863
Baek, H. et al. Highly energy-tunable quantum light from moiré-trapped excitons. Sci. Adv. 6, eaba8526 (2020).
doi: 10.1126/sciadv.aba8526
Fang, H. et al. Localization and interaction of interlayer excitons in MoSe
doi: 10.1038/s41467-023-42710-8
Chatterjee, S. et al. Harmonic to anharmonic tuning of moiré potential leading to unconventional stark effect and giant dipolar repulsion in WS
doi: 10.1038/s41467-023-40329-3
Brem, S. & Malic, E. Bosonic delocalization of dipolar moiré excitons. Nano Lett. 23, 4627–4633 (2023).
doi: 10.1021/acs.nanolett.3c01160
Zhang, L. et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity. Nature 591, 61–65 (2021).
doi: 10.1038/s41586-021-03228-5
Barré, E. et al. Optical absorption of interlayer excitons in transition-metal dichalcogenide heterostructures. Science 376, 406–410 (2022).
doi: 10.1126/science.abm8511
Kolobov, A. V. & Tominaga, J. Two-Dimensional Transition-Metal Dichalcogenides 1st edn, Vol. 239 (Springer, 2016).
Carrascoso, F., Frisenda, R. & Castellanos-Gomez, A. Biaxial versus uniaxial strain tuning of single-layer MoS
doi: 10.1016/j.nanoms.2021.03.001
Van Winkle, M. et al. Rotational and dilational reconstruction in transition metal dichalcogenide moiré bilayers. Nat. Commun. 14, 2989 (2023).
doi: 10.1038/s41467-023-38504-7
Woods, C. et al. Commensurate–incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10, 451–456 (2014).
doi: 10.1038/nphys2954
Li, H. et al. Imaging moiré excited states with photocurrent tunnelling microscopy. Nat. Mater. 23, 633–638 (2024).
Klimov, V. I. et al. Single-exciton optical gain in semiconductor nanocrystals. Nature 447, 441–446 (2007).
doi: 10.1038/nature05839
Wang, Z. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76–80 (2019).
doi: 10.1038/s41586-019-1591-7
Choi, J. et al. Twist angle-dependent interlayer exciton lifetimes in van der Waals heterostructures. Phys. Rev. Lett. 126, 047401 (2021).
doi: 10.1103/PhysRevLett.126.047401
Sun, D. et al. Observation of rapid exciton–exciton annihilation in monolayer molybdenum disulfide. Nano Lett. 14, 5625–5629 (2014).
doi: 10.1021/nl5021975
Amani, M. et al. Near-unity photoluminescence quantum yield in MoS
doi: 10.1126/science.aad2114
Fang, H. et al. Laser-like emission from a sandwiched MoTe
doi: 10.1002/adom.201900538
Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).
doi: 10.1126/science.aar4005
Ota, Y., Katsumi, R., Watanabe, K., Iwamoto, S. & Arakawa, Y. Topological photonic crystal nanocavity laser. Commun. Phys. 1, 86 (2018).
doi: 10.1038/s42005-018-0083-7
Wen, W., Wu, L. & Yu, T. Excitonic lasers in atomically thin 2D semiconductors. ACS Mater. Lett. 2, 1328–1342 (2020).
doi: 10.1021/acsmaterialslett.0c00277
Kreinberg, S. et al. Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling. Light. Sci. Appl. 6, e17030 (2017).
doi: 10.1038/lsa.2017.30
Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).
doi: 10.1088/2053-1583/1/1/011002
Zomer, P., Guimarães, M., Brant, J., Tombros, N. & Van Wees, B. Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride. Appl. Phys. Lett. 105, 013101 (2014).
doi: 10.1063/1.4886096
Zhao, W. et al. Evolution of electronic structure in atomically thin sheets of WS
doi: 10.1021/nn305275h
Derjaguin, B. V., Muller, V. M. & Toporov, Y. P. Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53, 314–326 (1975).
doi: 10.1016/0021-9797(75)90018-1

Auteurs

Qiaoling Lin (Q)

Department of Electrical and Photonics Engineering, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.
NanoPhoton - Center for Nanophotonics, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.
Centre for Nanostructured Graphene, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.

Hanlin Fang (H)

Department of Electrical and Photonics Engineering, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark. hanfan@dtu.dk.
NanoPhoton - Center for Nanophotonics, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark. hanfan@dtu.dk.
Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, 41296, Gothenburg, Sweden. hanfan@dtu.dk.

Alexei Kalaboukhov (A)

Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, 41296, Gothenburg, Sweden.

Yuanda Liu (Y)

Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore, Singapore.

Yi Zhang (Y)

Department of Electronics and Nanoengineering and QTF Centre of Excellence, Aalto University, Espoo, 02150, Finland.

Moritz Fischer (M)

Department of Electrical and Photonics Engineering, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.
NanoPhoton - Center for Nanophotonics, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.
Centre for Nanostructured Graphene, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.

Juntao Li (J)

State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou, 510275, China.

Joakim Hagel (J)

Department of Physics, Chalmers University of Technology, 41296, Gothenburg, Sweden.

Samuel Brem (S)

Department of Physics, Philipps-Universität Marburg, 35037, Marburg, Germany.

Ermin Malic (E)

Department of Physics, Philipps-Universität Marburg, 35037, Marburg, Germany.

Nicolas Stenger (N)

Department of Electrical and Photonics Engineering, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.
NanoPhoton - Center for Nanophotonics, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.
Centre for Nanostructured Graphene, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.

Zhipei Sun (Z)

Department of Electronics and Nanoengineering and QTF Centre of Excellence, Aalto University, Espoo, 02150, Finland.

Martijn Wubs (M)

Department of Electrical and Photonics Engineering, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.
NanoPhoton - Center for Nanophotonics, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.
Centre for Nanostructured Graphene, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.

Sanshui Xiao (S)

Department of Electrical and Photonics Engineering, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark. saxi@dtu.dk.
NanoPhoton - Center for Nanophotonics, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark. saxi@dtu.dk.
Centre for Nanostructured Graphene, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark. saxi@dtu.dk.

Classifications MeSH