Moiré-engineered light-matter interactions in MoS
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
09 Oct 2024
09 Oct 2024
Historique:
received:
10
04
2024
accepted:
26
09
2024
medline:
10
10
2024
pubmed:
10
10
2024
entrez:
9
10
2024
Statut:
epublish
Résumé
Moiré superlattices in van der Waals heterostructures represent a highly tunable quantum system, attracting substantial interest in both many-body physics and device applications. However, the influence of the moiré potential on light-matter interactions at room temperature has remained largely unexplored. In our study, we demonstrate that the moiré potential in MoS
Identifiants
pubmed: 39384821
doi: 10.1038/s41467-024-53083-x
pii: 10.1038/s41467-024-53083-x
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
8762Subventions
Organisme : Danmarks Grundforskningsfond (Danish National Research Foundation)
ID : DNRF103
Informations de copyright
© 2024. The Author(s).
Références
Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).
doi: 10.1038/s41567-020-01154-3
Wilson, N. P., Yao, W., Shan, J. & Xu, X. Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature 599, 383–392 (2021).
doi: 10.1038/s41586-021-03979-1
Regan, E. C. et al. Emerging exciton physics in transition metal dichalcogenide heterobilayers. Nat. Rev. Mater. 7, 778–795 (2022).
doi: 10.1038/s41578-022-00440-1
Yan, X. et al. Moiré synaptic transistor with room-temperature neuromorphic functionality. Nature 624, 551–556 (2023).
doi: 10.1038/s41586-023-06791-1
Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).
doi: 10.1073/pnas.1108174108
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
doi: 10.1038/nature26160
Du, L. et al. Moiré photonics and optoelectronics. Science 379, eadg0014 (2023).
doi: 10.1126/science.adg0014
Rivera, P. et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 13, 1004–1015 (2018).
doi: 10.1038/s41565-018-0193-0
Liu, Y. et al. Interlayer excitons in transition metal dichalcogenide semiconductors for 2D optoelectronics. Adv. Mater. 34, 2107138 (2022).
doi: 10.1002/adma.202107138
Liu, Y. et al. Room temperature nanocavity laser with interlayer excitons in 2D heterostructures. Sci. Adv. 5, eaav4506 (2019).
doi: 10.1126/sciadv.aav4506
Paik, E. Y. et al. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature 576, 80–84 (2019).
doi: 10.1038/s41586-019-1779-x
Qian, C. et al. Lasing of moiré trapped mose2/wse2 interlayer excitons coupled to a nanocavity. Sci. Adv. 10, eadk6359 (2024).
doi: 10.1126/sciadv.adk6359
He, F. et al. Moiré patterns in 2D materials: a review. ACS Nano 15, 5944–5958 (2021).
doi: 10.1021/acsnano.0c10435
Li, H. et al. Imaging moiré flat bands in three-dimensional reconstructed WSe
doi: 10.1038/s41563-021-00923-6
Susarla, S. et al. Hyperspectral imaging of exciton confinement within a moiré unit cell with a subnanometer electron probe. Science 378, 1235–1239 (2022).
doi: 10.1126/science.add9294
Hagel, J., Brem, S., Pineiro, J. A. & Malic, E. Impact of atomic reconstruction on optical spectra of twisted tmd homobilayers. Phys. Rev. Mater. 8, 034001 (2024).
doi: 10.1103/PhysRevMaterials.8.034001
Yu, H., Liu, G.-B., Tang, J., Xu, X. & Yao, W. Moiré excitons: From programmable quantum emitter arrays to spin-orbit–coupled artificial lattices. Sci. Adv. 3, e1701696 (2017).
doi: 10.1126/sciadv.1701696
Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).
doi: 10.1038/s41586-019-0975-z
Jin, C. et al. Observation of moiré excitons in WSe
doi: 10.1038/s41586-019-0976-y
Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe
doi: 10.1038/s41586-019-0957-1
Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).
doi: 10.1038/s41586-019-0986-9
Karni, O. et al. Structure of the moiré exciton captured by imaging its electron and hole. Nature 603, 247–252 (2022).
doi: 10.1038/s41586-021-04360-y
Schmitt, D. et al. Formation of moiré interlayer excitons in space and time. Nature 608, 499–503 (2022).
doi: 10.1038/s41586-022-04977-7
Merkl, P. et al. Ultrafast transition between exciton phases in van der Waals heterostructures. Nat. Mater. 18, 691–696 (2019).
doi: 10.1038/s41563-019-0337-0
Jiang, Y., Chen, S., Zheng, W., Zheng, B. & Pan, A. Interlayer exciton formation, relaxation, and transport in TMD van der Waals heterostructures. Light. Sci. Appl. 10, 72 (2021).
doi: 10.1038/s41377-021-00500-1
Tan, Q., Rasmita, A., Zhang, Z., Novoselov, K. & Gao, W. Signature of cascade transitions between interlayer excitons in a moiré superlattice. Phys. Rev. Lett. 129, 247401 (2022).
doi: 10.1103/PhysRevLett.129.247401
Sun, X. et al. Enhanced interactions of interlayer excitons in free-standing heterobilayers. Nature 610, 478–484 (2022).
doi: 10.1038/s41586-022-05193-z
Karni, O. et al. Infrared interlayer exciton emission in MoS
doi: 10.1103/PhysRevLett.123.247402
Tan, Q. et al. Layer-engineered interlayer excitons. Sci. Adv. 7, eabh0863 (2021).
doi: 10.1126/sciadv.abh0863
Baek, H. et al. Highly energy-tunable quantum light from moiré-trapped excitons. Sci. Adv. 6, eaba8526 (2020).
doi: 10.1126/sciadv.aba8526
Fang, H. et al. Localization and interaction of interlayer excitons in MoSe
doi: 10.1038/s41467-023-42710-8
Chatterjee, S. et al. Harmonic to anharmonic tuning of moiré potential leading to unconventional stark effect and giant dipolar repulsion in WS
doi: 10.1038/s41467-023-40329-3
Brem, S. & Malic, E. Bosonic delocalization of dipolar moiré excitons. Nano Lett. 23, 4627–4633 (2023).
doi: 10.1021/acs.nanolett.3c01160
Zhang, L. et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity. Nature 591, 61–65 (2021).
doi: 10.1038/s41586-021-03228-5
Barré, E. et al. Optical absorption of interlayer excitons in transition-metal dichalcogenide heterostructures. Science 376, 406–410 (2022).
doi: 10.1126/science.abm8511
Kolobov, A. V. & Tominaga, J. Two-Dimensional Transition-Metal Dichalcogenides 1st edn, Vol. 239 (Springer, 2016).
Carrascoso, F., Frisenda, R. & Castellanos-Gomez, A. Biaxial versus uniaxial strain tuning of single-layer MoS
doi: 10.1016/j.nanoms.2021.03.001
Van Winkle, M. et al. Rotational and dilational reconstruction in transition metal dichalcogenide moiré bilayers. Nat. Commun. 14, 2989 (2023).
doi: 10.1038/s41467-023-38504-7
Woods, C. et al. Commensurate–incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10, 451–456 (2014).
doi: 10.1038/nphys2954
Li, H. et al. Imaging moiré excited states with photocurrent tunnelling microscopy. Nat. Mater. 23, 633–638 (2024).
Klimov, V. I. et al. Single-exciton optical gain in semiconductor nanocrystals. Nature 447, 441–446 (2007).
doi: 10.1038/nature05839
Wang, Z. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76–80 (2019).
doi: 10.1038/s41586-019-1591-7
Choi, J. et al. Twist angle-dependent interlayer exciton lifetimes in van der Waals heterostructures. Phys. Rev. Lett. 126, 047401 (2021).
doi: 10.1103/PhysRevLett.126.047401
Sun, D. et al. Observation of rapid exciton–exciton annihilation in monolayer molybdenum disulfide. Nano Lett. 14, 5625–5629 (2014).
doi: 10.1021/nl5021975
Amani, M. et al. Near-unity photoluminescence quantum yield in MoS
doi: 10.1126/science.aad2114
Fang, H. et al. Laser-like emission from a sandwiched MoTe
doi: 10.1002/adom.201900538
Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).
doi: 10.1126/science.aar4005
Ota, Y., Katsumi, R., Watanabe, K., Iwamoto, S. & Arakawa, Y. Topological photonic crystal nanocavity laser. Commun. Phys. 1, 86 (2018).
doi: 10.1038/s42005-018-0083-7
Wen, W., Wu, L. & Yu, T. Excitonic lasers in atomically thin 2D semiconductors. ACS Mater. Lett. 2, 1328–1342 (2020).
doi: 10.1021/acsmaterialslett.0c00277
Kreinberg, S. et al. Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling. Light. Sci. Appl. 6, e17030 (2017).
doi: 10.1038/lsa.2017.30
Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).
doi: 10.1088/2053-1583/1/1/011002
Zomer, P., Guimarães, M., Brant, J., Tombros, N. & Van Wees, B. Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride. Appl. Phys. Lett. 105, 013101 (2014).
doi: 10.1063/1.4886096
Zhao, W. et al. Evolution of electronic structure in atomically thin sheets of WS
doi: 10.1021/nn305275h
Derjaguin, B. V., Muller, V. M. & Toporov, Y. P. Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53, 314–326 (1975).
doi: 10.1016/0021-9797(75)90018-1