Dinuclear Dysprosium Compounds: The Importance of Rigid Bridges.
Dysprosium
Peroxide
Single Molecule Magnet
fluoride
Journal
Chemistry (Weinheim an der Bergstrasse, Germany)
ISSN: 1521-3765
Titre abrégé: Chemistry
Pays: Germany
ID NLM: 9513783
Informations de publication
Date de publication:
07 Oct 2024
07 Oct 2024
Historique:
revised:
04
10
2024
received:
09
08
2024
accepted:
07
10
2024
medline:
7
10
2024
pubmed:
7
10
2024
entrez:
7
10
2024
Statut:
aheadofprint
Résumé
We report the synthesis, structures and magnetic behaviour of two isostructural dinuclear Dy3+ complexes where the metal ions of a previously reported monomeric building block are connected by a peroxide (O22-) or a pair of fluoride (2 x F-) bridges. The nature of the bridge determines the distance between the metal ion dipoles leading to a dipolar coupling in the peroxido bridged compound of only ca. 70% of that in the bis-fluorido bridged dimer. The sign of the overall coupling between the metals is antiferromagnetic for the peroxido bridged compound and ferromagnetic for the bis-fluorido bridged complex. This in turn influences the magnetisation dynamics. We compare the relaxation characteristics of the dimers with those of the previously reported monomeric building block. The relaxation dynamics for the bis-fluorido system are very fast. On the other hand, comparing the properties of the monomer, the peroxido bridged sample and the corresponding Y-doped sample show that the relaxation properties via a Raman process have very similar parameters. We show that a second dysprosium is important for either tuning or detuning the Single Molecule Magnet (SMM) properties of a system.
Identifiants
pubmed: 39373348
doi: 10.1002/chem.202403002
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202403002Informations de copyright
© 2024 Wiley‐VCH GmbH.