A landscape of resistance gene analogs in sour cherry (Prunus cerasus L.).


Journal

BMC research notes
ISSN: 1756-0500
Titre abrégé: BMC Res Notes
Pays: England
ID NLM: 101462768

Informations de publication

Date de publication:
06 Oct 2024
Historique:
received: 27 03 2024
accepted: 19 09 2024
medline: 7 10 2024
pubmed: 7 10 2024
entrez: 6 10 2024
Statut: epublish

Résumé

This research aims to analyze the presence and distribution of resistance genes in the avium and fruticosa subgenomes of Prunus cerasus through computational methods and bioinformatics tools. Analysis of genome and transcriptome sequencing data revealed a total of 19,570 transcripts with at least one resistance gene domain in Prunus cerasus subgenome avium and 19,142 in Prunus cerasus subgenome fruticosa. Key findings include the identification of 804 "complete" resistance gene transcripts in Prunus cerasus subgenome avium and 817 in Prunus cerasus subgenome fruticosa, with distinct distributions of resistance gene classes observed between the subgenomes. Phylogenetic analysis showed clustering of resistance genes, and unique resistance proteins were identified in each subgenome. Functional annotation comparisons with Arabidopsis thaliana highlighted shared and unique resistance genes, emphasizing the complexity of disease resistance in cherry species. Additionally, a higher diversity of RLKs and RLPs was observed, with 504 transcripts identified and 18 showing similarity to known reference genes.

Identifiants

pubmed: 39370523
doi: 10.1186/s13104-024-06952-z
pii: 10.1186/s13104-024-06952-z
doi:

Substances chimiques

Plant Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

292

Informations de copyright

© 2024. The Author(s).

Références

Samantara K, Bohra A, Mohapatra SR, Prihatini R, Asibe F, Singh L, Reyes VP, Tiwari A, Maurya AK, Croser JS, Wani SH, Siddique KHM, Varshney RK. Breeding more crops in less time: a perspective on speed breeding. Biology. 2022;11(2):275.
Flachowsky H, Le Roux PM, Peil A, Patocchi A, Richter K, Hanke MV. Application of a high-speed breeding technology to apple (Malus× domestica) based on transgenic early flowering plants and marker‐assisted selection. New Phytologist. 2011;192(2):364–377.
Hanke MV, Flachowsky H, Peil A, Emeriewen OF. 19.3 Malus x domestica apple. Biotechnology Fruit Nut Crops. 2020;440.
Pérez-Clemente RM, Ríos G, Badenes ML, Canas LA. 19.4 Prunus persica Peach and Nectarine. Biotechnology of Fruit Nut Crops. 2020;474.
Apostol J. Hungarian resistance breeding in sour cherries. In: Eucarpia symposium on fruit breeding and genetics, vol. 538, pp. 363–365; 1999.
Andersen KL, Sebolt AM, Sundin GW, Iezzoni AF. Assessment of the inheritance of resistance and tolerance in cherry (Prunus sp.) to Blumeriella jaapii, the causal agent of cherry leaf spot. Plant Pathology. 2018;67(3):682–691.
Sződi SZ, Rozsnyay Z, Rózsa E, Turóczi GY. Susceptibility of sour cherry cultivars to isolates of Monilia laxa (Ehrenbergh) Saccardo et Voglino. Int J Horticultural Sci. 2008;14(1–2):83–87.
Hulin MT, Vadillo Dieguez A, Cossu F, Lynn S, Russell K, Neale HC Jackson RW, Arnold DL, Mansfield JW, Harrison RJ. Identifying resistance in wild and ornamental cherry towards bacterial canker caused by Pseudomonas syringae. Plant Pathology. 2022;71(4):949–965.
Schuster M, Grafe C, Wolfram B. New results of sour cherry breeding in Germany. In: M. Ayala, J. P. Zoffoli, & G. A. Lang (Eds.), Proceedings of the VIth International Cherry Symposium: Reñaca, Chile, November 15–19, 2009 (Vol. 1020, pp. 71–74). ISHS, International Society for Horticultural Science; 2014. http://www.actahort.org/books/1020/1020_7.htm
Wöhner T, Emeriewen OF, Wittenberg AHJ, Nijbroek K, Wang RP, Blom E-J, Keilwagen J, Berner T, Hoff KJ, Gabriel L, Thierfeldt H, Almolla O, Barchi L, Schuster M, Lempe J, Peil A, & Flachowsky, H. (2023a). The structure of the tetraploid sour cherry ‘Schattenmorelle’ (Prunus cerasus L.) genome reveals insights into its segmental allopolyploid nature. Frontiers in Plant Science, 14, 1284478.
Wöhner T, Emeriewen OF, Wittenberg AHJ, Nijbroek K, Wang RP, Blom EJ, Keilwagen J, Berner T, Hoff KJ, Gabriel L, Thierfeldt H, Almolla O, Barchi L, Schuster M, Lempe J, Peil A, Flachowsky H. Data set: The structure of the tetraploid sour cherry ‘Schattenmorelle’ (Prunus cerasus L.) genome reveals insights into its segmental allopolyploid nature [Data set]. OpenAgrar Repository. 2023b. https://doi.org/10.5073/20230324-105730-0
Goeckeritz CZ, Rhoades KE, Childs KL, Iezzoni AF, VanBuren R, Hollender CA. Genome of tetraploid sour cherry (Prunus cerasus L.) ‘Montmorency’ identifies three distinct ancestral Prunus genomes. Horticulture Res. 2023;10(7):uhad097.
Jones JD, Dangl JL. The plant immune system. Nature. 2006;444(7117):323–329.
Gururani MA, Venkatesh J, Upadhyaya CP, Nookaraju A, Pandey SK, Park SW. Plant disease resistance genes: current status and future directions. Physiological Molecular Plant Pathology. 2012;78:51–65.
Sekhwal MK, Li P, Lam I, Wang X, Cloutier S, You FM. Disease resistance gene analogs (RGAs) in plants. Int J Mol Sci. 2015;16(8):19248–19290.
Shao ZQ, Xue JY, Wang Q, Wang B, Chen JQ. Revisiting the origin of plant NBS-LRR genes. Trends in Plant Science. 2019;24(1):9–12.
Soriano JM, Vilanova S, Romero C, Llácer G, Badenes ML. Characterization and mapping of NBS-LRR resistance gene analogs in apricot (Prunus armeniaca L.). Theoretical Applied Genetics. 2005;110:980–989.
Zhong Y, Chen Z, Cheng ZM. Different scales of gene duplications occurring at different times have jointly shaped the NBS-LRR genes in Prunus species. Molecular Genetics Genomics. 2022;297(1):263–276.
Jiu S, Chen B, Dong X, Lv Z, Wang Y, Yin C, Zhang C. Chromosome-scale genome assembly of Prunus pusilliflora provides novel insights into genome evolution, disease resistance, and dormancy release in Cerasus L. Horticulture Res. 2023;10(5):uhad062.
Andolfo G, Dohm JC, Himmelbauer H. Prediction of NB-LRR resistance genes based on full‐length sequence homology. The Plant J. 2022;110(6):1592–1602.
Altschul S. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–3402. https://doi.org/10.1093/nar/25.17.3389
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10(1):421. https://doi.org/10.1186/1471-2105-10-421
Cock PJA, Chilton JM, Grüning B, Johnson JE, Soranzo N. NCBI BLAST + integrated into Galaxy. GigaScience. 2015;4(1). https://doi.org/10.1186/s13742-015-0080-7
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biol Evolution. 2013;30(4):772–780.
Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biol Evol. 1987;4:406–425.
Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–791.
Nei M, Kumar S. Molecular evolution and phylogenetics. Oxford University Press, New York; 2000.
Tamura K, Stecher G, Kumar S. MEGA 11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution; 2021. https://doi.org/10.1093/molbev/msab120 .
Letunic and Bork (2021) Nucleic Acids Res. https://doi.org/10.1093/nar/gkab301
Voorrips R. MapChart: software for the graphical presentation of linkage maps and QTLs. J Heredity. 2002;93(1):77–78.
Lolle S, Greeff C, Petersen K, Roux M, Jensen MK, Bressendorff S, Petersen M. Matching NLR immune receptors to autoimmunity in camta3 mutants using antimorphic NLR alleles. Cell Host Microbe. 2017;21(4):518–529.
Kim SH, Gao F, Bhattacharjee S, Adiasor JA, Nam JC, Gassmann W. The Arabidopsis resistance-like gene SNC1 is activated by mutations in SRFR1 and contributes to resistance to the bacterial effector AvrRps4. PLoS Pathogens. 2010;6(11):e1001172.
Eitas TK, Nimchuk ZL, Dangl JL. Arabidopsis TAO1 is a TIR-NB-LRR protein that contributes to disease resistance induced by the Pseudomonas syringae effector AvrB. Proc Nat Acad Sci. 2008;105(17):6475–6480.
Persson M, Staal J, Oide S, Dixelius C. Layers of defense responses to Leptosphaeria maculans below the RLM1-and camalexin‐dependent resistances. New Phytologist. 2009;182(2):470–482.
Lewis JD, Lee AHY, Hassan JA, Wan J, Hurley B, Jhingree JR, Wang PW, Lo T, Youn J, Guttman DS, Desveaux D. The Arabidopsis ZED1 pseudokinase is required for ZAR1-mediated immunity induced by the Pseudomonas syringae type III effector HopZ1a. Proc Nat Acad Sci. 2013;110(46):18722–18727.
Tang D, Wang G, Zhou JM. Receptor kinases in plant-pathogen interactions: more than pattern recognition. The Plant Cell. 2017;29(4):618–637.
Swiderski MR, Innes RW. The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily. The Plant J. 2001;26(1):101–112.
Zhou J, Loh YT, Bressan RA, Martin GB. The tomato gene Pti1 encodes a serine/threonine kinase that is phosphorylated by Pto and is involved in the hypersensitive response. Cell. 1995;83(6):925–935.
Meng X, Qiao X, Wu X, Zeng W, Hu Y, Liu C, Li Q, Chen Y, Qui C, Zhang S, Yin H. Genomic characterisation, phylogenetic comparison and candidate gene identification of the lipid transfer proteins gene family in pear (Pyrus bretschneideri Rehd.) and other Rosaceae species. J Horticultural Sci Biotechnology. 2023;98(2):178–193.
Chen XR, Brurberg MB, Elameen A, Klemsdal SS, Martinussen I. Expression of resistance gene analogs in woodland strawberry (Fragaria vesca) during infection with Phytophthora cactorum. Molecular Genetics Genomics. 2016;291:1967–1978.
Zhang B, Liu M, Wang Y, Yuan W, Zhang H. Plant NLRs: evolving with pathogen effectors and engineerable to improve resistance. Frontiers Microbiology. 2022;13:1018504.
Huard-Chauveau C, Perchepied L, Debieu M, Rivas S, Kroj T, Kars I, Bergelson Y, Roux F, Roby D. An atypical kinase under balancing selection confers broad-spectrum disease resistance in Arabidopsis. PLoS Genetics. 2013;9(9):e1003766.
Tang P, Zhang Y, Sun X, Tian D, Yang S, Ding J. Disease resistance signature of the leucine-rich repeat receptor-like kinase genes in four plant species. Plant Science. 2010;179(4):399–406.
Jaganathan D, Bohra A, Thudi M, Varshney RK. Fine mapping and gene cloning in the post-NGS era: advances and prospects. Theoretical Appl Genetics. 2020;133(5):1791–1810.
Li XY, Gao L, Zhang WH, Liu JK, Zhang YJ, Wang HY, Liu DQ. Characteristic expression of wheat PR5 gene in response to infection by the leaf rust pathogen, Puccinia triticina. J Plant Interactions. 2015;10(1):132–141.
Hulbert SH, Bai J, Fellers JP, Pacheco MG, Bowden RL. Gene expression patterns in near isogenic lines for wheat rust resistance gene Lr34/Yr18. Phytopathology. 2007;97(9):1083–1093.
Dhariwal R, Vyas S, Bhaganagare GR, Jha SK, Khurana JP, Tyagi AK, Prabhu KV, Balyan HS, Gupta PK. Analysis of differentially expressed genes in leaf rust infected bread wheat involving seedling resistance gene Lr28. Functional Plant Biology. 2011;38(6):479–492.

Auteurs

Thomas Wolfgang Wöhner (TW)

Institute for Breeding Research on Fruit Crops, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Dresden, 01326, Saxony, Germany. thomas.woehner@julius-kuehn.de.

Ofere Francis Emeriewen (OF)

Institute for Breeding Research on Fruit Crops, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Dresden, 01326, Saxony, Germany.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family

Classifications MeSH