Neuronal wiring diagram of an adult brain.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
Oct 2024
Historique:
received: 11 07 2023
accepted: 10 05 2024
medline: 3 10 2024
pubmed: 3 10 2024
entrez: 2 10 2024
Statut: ppublish

Résumé

Connections between neurons can be mapped by acquiring and analysing electron microscopic brain images. In recent years, this approach has been applied to chunks of brains to reconstruct local connectivity maps that are highly informative

Identifiants

pubmed: 39358518
doi: 10.1038/s41586-024-07558-y
pii: 10.1038/s41586-024-07558-y
doi:

Substances chimiques

Neurotransmitter Agents 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

124-138

Investigateurs

Zairene Lenizo (Z)
Austin T Burke (AT)
Kyle Patrick Willie (KP)
Nikitas Serafetinidis (N)
Nashra Hadjerol (N)
Ryan Willie (R)
Ben Silverman (B)
John Anthony Ocho (JA)
Joshua Bañez (J)
Rey Adrian Candilada (RA)
Anne Kristiansen (A)
Nelsie Panes (N)
Arti Yadav (A)
Remer Tancontian (R)
Shirleyjoy Serona (S)
Jet Ivan Dolorosa (JI)
Kendrick Joules Vinson (KJ)
Dustin Garner (D)
Regine Salem (R)
Ariel Dagohoy (A)
Jaime Skelton (J)
Mendell Lopez (M)
Laia Serratosa Capdevila (LS)
Griffin Badalamente (G)
Thomas Stocks (T)
Anjali Pandey (A)
Darrel Jay Akiatan (DJ)
James Hebditch (J)
Celia David (C)
Dharini Sapkal (D)
Shaina Mae Monungolh (SM)
Varun Sane (V)
Mark Lloyd Pielago (ML)
Miguel Albero (M)
Jacquilyn Laude (J)
Márcia Dos Santos (M)
Zeba Vohra (Z)
Kaiyu Wang (K)
Allien Mae Gogo (AM)
Emil Kind (E)
Alvin Josh Mandahay (AJ)
Chereb Martinez (C)
John David Asis (JD)
Chitra Nair (C)
Dhwani Patel (D)
Marchan Manaytay (M)
Imaan F M Tamimi (IFM)
Clyde Angelo Lim (CA)
Philip Lenard Ampo (PL)
Michelle Darapan Pantujan (MD)
Alexandre Javier (A)
Daril Bautista (D)
Rashmita Rana (R)
Jansen Seguido (J)
Bhargavi Parmar (B)
John Clyde Saguimpa (JC)
Merlin Moore (M)
Markus William Pleijzier (MW)
Mark Larson (M)
Joseph Hsu (J)
Itisha Joshi (I)
Dhara Kakadiya (D)
Amalia Braun (A)
Cathy Pilapil (C)
Marina Gkantia (M)
Kaushik Parmar (K)
Quinn Vanderbeck (Q)
Irene Salgarella (I)
Christopher Dunne (C)
Eva Munnelly (E)
Chan Hyuk Kang (CH)
Lena Lörsch (L)
Jinmook Lee (J)
Lucia Kmecova (L)
Gizem Sancer (G)
Christa Baker (C)
Jenna Joroff (J)
Steven Calle (S)
Yashvi Patel (Y)
Olivia Sato (O)
Siqi Fang (S)
Janice Salocot (J)
Farzaan Salman (F)
Sebastian Molina-Obando (S)
Paul Brooks (P)
Mai Bui (M)
Matthew Lichtenberger (M)
Edward Tamboboy (E)
Katie Molloy (K)
Alexis E Santana-Cruz (AE)
Anthony Hernandez (A)
Seongbong Yu (S)
Arzoo Diwan (A)
Monika Patel (M)
Travis R Aiken (TR)
Sarah Morejohn (S)
Sanna Koskela (S)
Tansy Yang (T)
Daniel Lehmann (D)
Jonas Chojetzki (J)
Sangeeta Sisodiya (S)
Selden Koolman (S)
Philip K Shiu (PK)
Sky Cho (S)
Annika Bast (A)
Brian Reicher (B)
Marlon Blanquart (M)
Lucy Houghton (L)
Hyungjun Choi (H)
Maria Ioannidou (M)
Matt Collie (M)
Joanna Eckhardt (J)
Benjamin Gorko (B)
Li Guo (L)
Zhihao Zheng (Z)
Alisa Poh (A)
Marina Lin (M)
István Taisz (I)
Wes Murfin (W)
Álvaro Sanz Díez (ÁS)
Nils Reinhard (N)
Peter Gibb (P)
Nidhi Patel (N)
Sandeep Kumar (S)
Minsik Yun (M)
Megan Wang (M)
Devon Jones (D)
Lucas Encarnacion-Rivera (L)
Annalena Oswald (A)
Akanksha Jadia (A)
Mert Erginkaya (M)
Nik Drummond (N)
Leonie Walter (L)
Ibrahim Tastekin (I)
Xin Zhong (X)
Yuta Mabuchi (Y)
Fernando J Figueroa Santiago (FJ)
Urja Verma (U)
Nick Byrne (N)
Edda Kunze (E)
Thomas Crahan (T)
Ryan Margossian (R)
Haein Kim (H)
Iliyan Georgiev (I)
Fabianna Szorenyi (F)
Atsuko Adachi (A)
Benjamin Bargeron (B)
Tomke Stürner (T)
Damian Demarest (D)
Burak Gür (B)
Andrea N Becker (AN)
Robert Turnbull (R)
Ashley Morren (A)
Andrea Sandoval (A)
Anthony Moreno-Sanchez (A)
Diego A Pacheco (DA)
Eleni Samara (E)
Haley Croke (H)
Alexander Thomson (A)
Connor Laughland (C)
Suchetana B Dutta (SB)
Paula Guiomar Alarcón de Antón (PGA)
Binglin Huang (B)
Patricia Pujols (P)
Isabel Haber (I)
Amanda González-Segarra (A)
Daniel T Choe (DT)
Veronika Lukyanova (V)
Nino Mancini (N)
Zequan Liu (Z)
Tatsuo Okubo (T)
Miriam A Flynn (MA)
Gianna Vitelli (G)
Meghan Laturney (M)
Feng Li (F)
Shuo Cao (S)
Carolina Manyari-Diaz (C)
Hyunsoo Yim (H)
Anh Duc Le (A)
Kate Maier (K)
Seungyun Yu (S)
Yeonju Nam (Y)
Daniel Bąba (D)
Amanda Abusaif (A)
Audrey Francis (A)
Jesse Gayk (J)
Sommer S Huntress (SS)
Raquel Barajas (R)
Mindy Kim (M)
Xinyue Cui (X)
Gabriella R Sterne (GR)
Anna Li (A)
Keehyun Park (K)
Georgia Dempsey (G)
Alan Mathew (A)
Jinseong Kim (J)
Taewan Kim (T)
Guan-Ting Wu (GT)
Serene Dhawan (S)
Margarida Brotas (M)
Cheng-Hao Zhang (CH)
Shanice Bailey (S)
Alexander Del Toro (A)
Runzhe Yang (R)
Stephan Gerhard (S)
Andrew Champion (A)
David J Anderson (DJ)
Rudy Behnia (R)
Salil S Bidaye (SS)
Alexander Borst (A)
Eugenia Chiappe (E)
Kenneth J Colodner (KJ)
Andrew Dacks (A)
Barry Dickson (B)
Denise Garcia (D)
Stefanie Hampel (S)
Volker Hartenstein (V)
Bassem Hassan (B)
Charlotte Helfrich-Forster (C)
Wolf Huetteroth (W)
Jinseop Kim (J)
Sung Soo Kim (SS)
Young-Joon Kim (YJ)
Jae Young Kwon (JY)
Wei-Chung Lee (WC)
Gerit A Linneweber (GA)
Gaby Maimon (G)
Richard Mann (R)
Stéphane Noselli (S)
Michael Pankratz (M)
Lucia Prieto-Godino (L)
Jenny Read (J)
Michael Reiser (M)
Katie von Reyn (K)
Carlos Ribeiro (C)
Kristin Scott (K)
Andrew M Seeds (AM)
Mareike Selcho (M)
Marion Silies (M)
Julie Simpson (J)
Scott Waddell (S)
Mathias F Wernet (MF)
Rachel I Wilson (RI)
Fred W Wolf (FW)
Zepeng Yao (Z)
Nilay Yapici (N)
Meet Zandawala (M)

Informations de copyright

© 2024. The Author(s).

Références

Scheffer, L. K. et al. A connectome and analysis of the adult Drosophila central brain. eLife 9, e57443 (2020).
pubmed: 32880371 pmcid: 7546738 doi: 10.7554/eLife.57443
Takemura, S.-Y. et al. A visual motion detection circuit suggested by Drosophila connectomics. Nature 500, 175–181 (2013).
pubmed: 23925240 pmcid: 3799980 doi: 10.1038/nature12450
Takemura, S., Nern, A., Chklovskii, D. B. & Scheffer, L. K. The comprehensive connectome of a neural substrate for ‘ON’ motion detection in Drosophila. eLife 6, e24394 (2017).
pubmed: 28432786 pmcid: 5435463 doi: 10.7554/eLife.24394
MICrONS Consortium. Functional connectomics spanning multiple areas of mouse visual cortex. Preprint at bioRxiv https://doi.org/10.1101/2021.07.28.454025 (2021).
Shapson-Coe, A. et al. A petavoxel fragment of human cerebral cortex reconstructed at nanoscale resolution. Science 384, eadk4858 (2024).
Loomba, S. et al. Connectomic comparison of mouse and human cortex. Science 377, eabo0924 (2022).
pubmed: 35737810 doi: 10.1126/science.abo0924
Buhmann, J. et al. Automatic detection of synaptic partners in a whole-brain Drosophila electron microscopy data set. Nat. Methods 18, 771–774 (2021).
pubmed: 34168373 pmcid: 7611460 doi: 10.1038/s41592-021-01183-7
Dorkenwald, S. et al. FlyWire: online community for whole-brain connectomics. Nat. Methods 19, 119–128 (2022).
pubmed: 34949809 doi: 10.1038/s41592-021-01330-0
Zheng, Z. et al. A complete electron microscopy volume of the brain of adult Drosophila melanogaster. Cell 174, 730–743.e22 (2018).
pubmed: 30033368 pmcid: 6063995 doi: 10.1016/j.cell.2018.06.019
Eckstein, N. et al. Neurotransmitter classification from electron microscopy images at synaptic sites in Drosophila melanogaster. Cell 187, 2574–2594.e23 (2024).
pubmed: 38729112 pmcid: 11106717 doi: 10.1016/j.cell.2024.03.016
Matsliah, A. et al. Neuronal parts list and wiring diagram for a visual system. Nature https://doi.org/10.1038/s41586-024-07981-1 (2024).
Schlegel, P. et al. Whole-brain annotation and multi-connectome cell typing of Drosophila. Nature https://doi.org/10.1038/s41586-024-07686-5 (2024).
Ma, X., Hou, X., Edgecombe, G. D. & Strausfeld, N. J. Complex brain and optic lobes in an early Cambrian arthropod. Nature 490, 258–261 (2012).
Sporns, O., Tononi, G. & Kötter, R. The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1, e42 (2005).
pubmed: 16201007 pmcid: 1239902 doi: 10.1371/journal.pcbi.0010042
Costandi, M. Anti-connectome-ism. The Guardian (21 September 2012).
Lichtman, J. W. & Denk, W. The big and the small: challenges of imaging the brain’s circuits. Science 334, 618–623 (2011).
pubmed: 22053041 doi: 10.1126/science.1209168
Briggman, K. L. & Bock, D. D. Volume electron microscopy for neuronal circuit reconstruction. Curr. Opin. Neurobiol. 22, 154–161 (2012).
pubmed: 22119321 doi: 10.1016/j.conb.2011.10.022
Coen, P. et al. Dynamic sensory cues shape song structure in Drosophila. Nature 507, 233–237 (2014).
pubmed: 24598544 doi: 10.1038/nature13131
Fisher, Y. E. Flexible navigational computations in the Drosophila central complex. Curr. Opin. Neurobiol. 73, 102514 (2022).
pubmed: 35196623 doi: 10.1016/j.conb.2021.12.001
Cognigni, P., Felsenberg, J. & Waddell, S. Do the right thing: neural network mechanisms of memory formation, expression and update in Drosophila. Curr. Opin. Neurobiol. 49, 51–58 (2018).
pubmed: 29258011 pmcid: 5981003 doi: 10.1016/j.conb.2017.12.002
Schretter, C. E. et al. Cell types and neuronal circuitry underlying female aggression in Drosophila. eLife 9, e58942 (2020).
pubmed: 33141021 pmcid: 7787668 doi: 10.7554/eLife.58942
Deutsch, D. et al. The neural basis for a persistent internal state in Drosophila females. eLife 9, e59502 (2020).
pubmed: 33225998 pmcid: 7787663 doi: 10.7554/eLife.59502
Li, F. et al. The connectome of the adult Drosophila mushroom body provides insights into function. eLife 9, e62576 (2020).
pubmed: 33315010 pmcid: 7909955 doi: 10.7554/eLife.62576
Hulse, B. K. et al. A connectome of the Drosophila central complex reveals network motifs suitable for flexible navigation and context-dependent action selection. eLife 10, e66039 (2021).
pubmed: 34696823 pmcid: 9477501 doi: 10.7554/eLife.66039
Baker, C. A. et al. Neural network organization for courtship-song feature detection in Drosophila. Curr. Biol. 32, 3317–3333.e7 (2022).
pubmed: 35793679 pmcid: 9378594 doi: 10.1016/j.cub.2022.06.019
Schlegel, P., Bates, A. S., Stürner, T. & Jagannathan, S. R. Information flow, cell types and stereotypy in a full olfactory connectome. eLife 10, e66018 (2021).
pubmed: 34032214 pmcid: 8298098 doi: 10.7554/eLife.66018
Borst, A. & Helmstaedter, M. Common circuit design in fly and mammalian motion vision. Nat. Neurosci. 18, 1067–1076 (2015).
pubmed: 26120965 doi: 10.1038/nn.4050
Farris, S. M. Are mushroom bodies cerebellum-like structures? Arthropod Struct. Dev. 40, 368–379 (2011).
pubmed: 21371566 doi: 10.1016/j.asd.2011.02.004
Pacheco, D. A., Thiberge, S. Y., Pnevmatikakis, E. & Murthy, M. Auditory activity is diverse and widespread throughout the central brain of Drosophila. Nat. Neurosci. 24, 93–104 (2021).
pubmed: 33230320 doi: 10.1038/s41593-020-00743-y
Brezovec, B. E. et al. Mapping the neural dynamics of locomotion across the Drosophila brain. Curr. Biol. 34, 710–726.e4 (2024).
pubmed: 38242122 doi: 10.1016/j.cub.2023.12.063
White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B 314, 1–340 (1986).
doi: 10.1098/rstb.1986.0056
Cook, S. J. et al. Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature 571, 63–71 (2019).
pubmed: 31270481 pmcid: 6889226 doi: 10.1038/s41586-019-1352-7
Winding, M. et al. The connectome of an insect brain. Science 379, eadd9330 (2023).
pubmed: 36893230 pmcid: 7614541 doi: 10.1126/science.add9330
Shiu, P. K. et al. A Drosophila computational brain model reveals sensorimotor processing. Nature https://doi.org/10.1038/s41586-024-07763-9 (2024).
Eichler, K. et al. Somatotopic organization among parallel sensory pathways that promote a grooming sequence in Drosophila. eLife 12, RP87602 (2024).
Stürner, T. et al. Comparative connectomics of the descending and ascending neurons of the Drosophila nervous system: stereotypy and sexual dimorphism. Preprint at bioRxiv https://doi.org/10.1101/2024.06.04.596633 (2024).
Garner, D. et al. Connectome reconstruction predicts visual features used for navigation. Nature https://doi.org/10.1038/s41586-024-07967-z (2024).
Ganguly, I., Heckman, E. L., Litwin-Kumar, A., Clowney, E. J. & Behnia, R. Diversity of visual inputs to Kenyon cells of the Drosophila mushroom body. Nat. Commun. 15, 5698 (2024).
Pospisil, D. A. et al. The fly connectome reveals a path to the effectome. Nature https://doi.org/10.1038/s41586-024-07982-0 (2024).
Reinhard, N., Fukuda, A., Manoli, G., Derksen, E. & Saito, A. Synaptic and peptidergic connectomes of the Drosophila circadian clock. Preprint at bioRxiv https://doi.org/10.1101/2023.09.11.557222 (2023).
Christenson, M. P. et al. Hue selectivity from recurrent circuitry in Drosophila. Nat. Neurosci. 27, 1137–1147 (2024).
Lin, A. et al. Network statistics of the whole-brain connectome of Drosophila. Nature https://doi.org/10.1038/s41586-024-07968-y (2024).
Sapkal, N. et al. Neural circuit mechanisms underlying context-specific halting in Drosophila. Nature https://doi.org/10.1038/s41586-024-07854-7 (2024).
Seung, H. S. Predicting visual function by interpreting a neuronal wiring diagram. Nature https://doi.org/10.1038/s41586-024-07953-5 (2024).
Cornean, J. et al. Heterogeneity of synaptic connectivity in the fly visual system. Nat. Commun. 15, 1570 (2024).
pubmed: 38383614 pmcid: 10882054 doi: 10.1038/s41467-024-45971-z
Cachero, S., Ostrovsky, A. D., Jai, Y. Y. & Dickson, B. J. Sexual dimorphism in the fly brain. Curr. Biol. 20, 1589–1601 (2010).
pubmed: 20832311 pmcid: 2957842 doi: 10.1016/j.cub.2010.07.045
Murthy, M., Fiete, I. & Laurent, G. Testing odor response stereotypy in the Drosophila mushroom body. Neuron 59, 1009–1023 (2008).
pubmed: 18817738 pmcid: 2654402 doi: 10.1016/j.neuron.2008.07.040
Zheng, Z. et al. Structured sampling of olfactory input by the fly mushroom body. Curr. Biol. 32, 3334–3349.e6 (2022).
pubmed: 35797998 pmcid: 9413950 doi: 10.1016/j.cub.2022.06.031
Lin, A. et al. Network statistics of the whole-brain connectome of Drosophila. Preprint at bioRxiv https://doi.org/10.1101/2023.07.29.551086 (2023).
Dorkenwald, S. et al. CAVE: Connectome Annotation Versioning Engine. Preprint at bioRxiv https://doi.org/10.1101/2023.07.26.550598 (2023).
Schüz, A. & Palm, G. Density of neurons and synapses in the cerebral cortex of the mouse. J. Comp. Neurol. 286, 442–455 (1989).
pubmed: 2778101 doi: 10.1002/cne.902860404
Dorkenwald, S. et al. Automated synaptic connectivity inference for volume electron microscopy. Nat. Methods 14, 435–442 (2017).
pubmed: 28250467 doi: 10.1038/nmeth.4206
Schneider-Mizell, C. M. et al. Quantitative neuroanatomy for connectomics in Drosophila. eLife 5, e12059 (2016).
pubmed: 26990779 pmcid: 4811773 doi: 10.7554/eLife.12059
Phelps, J. S. et al. Reconstruction of motor control circuits in adult Drosophila using automated transmission electron microscopy. Cell 184, 759–774.e18 (2021).
pubmed: 33400916 pmcid: 8312698 doi: 10.1016/j.cell.2020.12.013
Takemura, S.-Y. et al. A connectome of the male Drosophila ventral nerve cord. eLife 13, RP97769 (2024).
Marin, E. C. et al. Systematic annotation of a complete adult male Drosophila nerve cord connectome reveals principles of functional organisation. Preprint at bioRxiv https://doi.org/10.1101/2023.06.05.543407 (2023).
Kim, H. et al. Wiring patterns from auditory sensory neurons to the escape and song-relay pathways in fruit flies. J. Comp. Neurol. 528, 2068–2098 (2020).
pubmed: 32012264 pmcid: 7676477 doi: 10.1002/cne.24877
Sterne, G. R., Otsuna, H., Dickson, B. J. & Scott, K. Classification and genetic targeting of cell types in the primary taste and premotor center of the adult Drosophila brain. eLife 10, e71679 (2021).
pubmed: 34473057 pmcid: 8445619 doi: 10.7554/eLife.71679
Azevedo, A. et al. Connectomic reconstruction of a female Drosophila ventral nerve cord. Nature 631, 360–368 (2024).
Wu, M. et al. Visual projection neurons in the Drosophila lobula link feature detection to distinct behavioral programs. eLife 5, e21022 (2016).
pubmed: 28029094 pmcid: 5293491 doi: 10.7554/eLife.21022
Otsuna, H. & Ito, K. Systematic analysis of the visual projection neurons of Drosophila melanogaster. I. Lobula-specific pathways. J. Comp. Neurol. 497, 928–958 (2006).
pubmed: 16802334 doi: 10.1002/cne.21015
Zhao, A. et al. A comprehensive neuroanatomical survey of the Drosophila lobula plate tangential neurons with predictions for their optic flow sensitivity. Preprint at bioRxiv https://doi.org/10.1101/2023.10.16.562634 (2023).
Repérant, J. et al. The centrifugal visual system of vertebrates: a comparative analysis of its functional anatomical organization. Brain Res. Rev. 52, 1–57 (2006).
pubmed: 16469387 doi: 10.1016/j.brainresrev.2005.11.008
Karuppudurai, T. et al. A hard-wired glutamatergic circuit pools and relays UV signals to mediate spectral preference in Drosophila. Neuron 81, 603–615 (2014).
pubmed: 24507194 pmcid: 3920195 doi: 10.1016/j.neuron.2013.12.010
Meinertzhagen, I. A. Of what use is connectomics? A personal perspective on the Drosophila connectome. J. Exp. Biol. 221, jeb164954 (2018).
pubmed: 29784759 doi: 10.1242/jeb.164954
Chklovskii, D. B. Synaptic connectivity and neuronal morphology: two sides of the same coin. Neuron 43, 609–617 (2004).
pubmed: 15339643
Kremer, M. C., Jung, C., Batelli, S., Rubin, G. M. & Gaul, U. The glia of the adult Drosophila nervous system. Glia 65, 606–638 (2017).
pubmed: 28133822 pmcid: 5324652 doi: 10.1002/glia.23115
Ohyama, T. et al. A multilevel multimodal circuit enhances action selection in Drosophila. Nature 520, 633–639 (2015).
pubmed: 25896325 doi: 10.1038/nature14297
Hong, E. J. & Wilson, R. I. Simultaneous encoding of odors by channels with diverse sensitivity to inhibition. Neuron 85, 573–589 (2015).
pubmed: 25619655 pmcid: 5495107 doi: 10.1016/j.neuron.2014.12.040
Meier, M. & Borst, A. Extreme compartmentalization in a Drosophila amacrine cell. Curr. Biol. 29, 1545–1550.e2 (2019).
pubmed: 31031119 doi: 10.1016/j.cub.2019.03.070
Croset, V., Treiber, C. D. & Waddell, S. Cellular diversity in the Drosophila midbrain revealed by single-cell transcriptomics. eLife 7, e34550 (2018).
pubmed: 29671739 pmcid: 5927767 doi: 10.7554/eLife.34550
Molina-Obando, S. et al. ON selectivity in the Drosophila visual system is a multisynaptic process involving both glutamatergic and GABAergic inhibition. eLife 8, e49373 (2019).
pubmed: 31535971 pmcid: 6845231 doi: 10.7554/eLife.49373
Liu, W. W. & Wilson, R. I. Glutamate is an inhibitory neurotransmitter in the Drosophila olfactory system. Proc. Natl Acad. Sci. USA 110, 10294–10299 (2013).
pubmed: 23729809 pmcid: 3690841 doi: 10.1073/pnas.1220560110
Zingg, B. et al. Neural networks of the mouse neocortex. Cell 156, 1096–1111 (2014).
pubmed: 24581503 pmcid: 4169118 doi: 10.1016/j.cell.2014.02.023
Oh, S. W. et al. A mesoscale connectome of the mouse brain. Nature 508, 207–214 (2014).
pubmed: 24695228 pmcid: 5102064 doi: 10.1038/nature13186
Markov, N. T. et al. A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb. Cortex 24, 17–36 (2014).
pubmed: 23010748 doi: 10.1093/cercor/bhs270
Meissner, G. W. et al. A searchable image resource of Drosophila GAL4 driver expression patterns with single neuron resolution. eLife 12, e80660 (2023).
pubmed: 36820523 pmcid: 10030108 doi: 10.7554/eLife.80660
Chiang, A.-S. et al. Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr. Biol. 21, 1–11 (2011).
pubmed: 21129968 doi: 10.1016/j.cub.2010.11.056
Kasthuri, N. & Lichtman, J. W. The rise of the ‘projectome’. Nat. Methods 4, 307–308 (2007).
pubmed: 17396125 doi: 10.1038/nmeth0407-307
Ito, K. et al. A systematic nomenclature for the insect brain. Neuron 81, 755–765 (2014).
pubmed: 24559671 doi: 10.1016/j.neuron.2013.12.017
Fischbach, K.-F. & Dittrich, A. P. M. The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res. 258, 441–475 (1989).
doi: 10.1007/BF00218858
Nern, A., Pfeiffer, B. D. & Rubin, G. M. Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system. Proc. Natl Acad. Sci. USA 112, E2967–E2976 (2015).
pubmed: 25964354 pmcid: 4460454 doi: 10.1073/pnas.1506763112
Bae, J. A. et al. Digital museum of retinal ganglion cells with dense anatomy and physiology. Cell 173, 1293–1306.e19 (2018).
pubmed: 29775596 pmcid: 6556895 doi: 10.1016/j.cell.2018.04.040
Shinomiya, K., Nern, A., Meinertzhagen, I. A., Plaza, S. M. & Reiser, M. B. Neuronal circuits integrating visual motion information in Drosophila melanogaster. Curr. Biol. 32, 3529–3544.e2 (2022).
pubmed: 35839763 doi: 10.1016/j.cub.2022.06.061
Lappalainen, J. K. et al. Connectome-constrained networks predict neural activity across the fly visual system. Nature https://doi.org/10.1038/s41586-024-07939-3 (2024).
Snell, N. J. et al. Complex representation of taste quality by second-order gustatory neurons in Drosophila. Curr. Biol. 32, 3758–3772.e4 (2022).
pubmed: 35973432 pmcid: 9474709 doi: 10.1016/j.cub.2022.07.048
Vogt, K. et al. Direct neural pathways convey distinct visual information to Drosophila mushroom bodies. eLife 5, e14009 (2016).
pubmed: 27083044 pmcid: 4884080 doi: 10.7554/eLife.14009
Mu, S. et al. 3D reconstruction of cell nuclei in a full Drosophila brain. Preprint at bioRxiv https://doi.org/10.1101/2021.11.04.467197 (2021).
Hofbauer, A. & Buchner, E. Does Drosophila have seven eyes? Naturwissenschaften 76, 335–336 (1989).
doi: 10.1007/BF00368438
Hu, K. G., Reichert, H. & Stark, W. S. Electrophysiological characterization of Drosophila ocelli. J. Comp. Physiol. 126, 15–24 (1978).
doi: 10.1007/BF01342646
Stark, W. S., Sapp, R. & Carlson, S. D. Ultrastructure of the ocellar visual system in normal and mutant Drosophila melanogaster. J. Neurogenet. 5, 127–153 (1989).
pubmed: 2500507 doi: 10.3109/01677068909066203
Stange, G., Stowe, S., Chahl, J. S. & Massaro, A. Anisotropic imaging in the dragonfly median ocellus: a matched filter for horizon detection. J. Comp. Physiol. A 188, 455–467 (2002).
doi: 10.1007/s00359-002-0317-7
Cheong, H. S. J. et al. Transforming descending input into behavior: the organization of premotor circuits in the Drosophila male adult nerve cord connectome. Preprint at bioRxiv https://doi.org/10.1101/2023.06.07.543976 (2023).
Suver, M. P., Huda, A., Iwasaki, N., Safarik, S. & Dickinson, M. H. An array of descending visual interneurons encoding self-motion in Drosophila. J. Neurosci. 36, 11768–11780 (2016).
pubmed: 27852783 pmcid: 5125229 doi: 10.1523/JNEUROSCI.2277-16.2016
Haag, J., Wertz, A. & Borst, A. Integration of lobula plate output signals by DNOVS1, an identified premotor descending neuron. J. Neurosci. 27, 1992–2000 (2007).
pubmed: 17314295 pmcid: 6673546 doi: 10.1523/JNEUROSCI.4393-06.2007
Kim, A. J., Fenk, L. M., Lyu, C. & Maimon, G. Quantitative predictions orchestrate visual signaling in Drosophila. Cell 168, 280–294.e12 (2017).
pubmed: 28065412 pmcid: 6320683 doi: 10.1016/j.cell.2016.12.005
Braitenberg, V. Vehicles: Experiments in Synthetic Psychology (MIT Press, 1984).
Seung, H. S. Connectome: How the Brain’s Wiring Makes Us Who We Are (Houghton Mifflin Harcourt, 2012).
Davis, F. P. et al. A genetic, genomic, and computational resource for exploring neural circuit function. eLife 9, e50901 (2020).
pubmed: 31939737 pmcid: 7034979 doi: 10.7554/eLife.50901
Groschner, L. N., Malis, J. G., Zuidinga, B. & Borst, A. A biophysical account of multiplication by a single neuron. Nature 603, 119–123 (2022).
pubmed: 35197635 pmcid: 8891015 doi: 10.1038/s41586-022-04428-3
Ammer, G. et al. Multilevel visual motion opponency in Drosophila. Nat. Neurosci. 26, 1894–1905 (2023).
pubmed: 37783895 pmcid: 10620086 doi: 10.1038/s41593-023-01443-z
Knott, G., Marchman, H., Wall, D. & Lich, B. Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J. Neurosci. 28, 2959–2964 (2008).
pubmed: 18353998 pmcid: 6670719 doi: 10.1523/JNEUROSCI.3189-07.2008
Xu, C. S. et al. Enhanced FIB-SEM systems for large-volume 3D imaging. eLife 6, e25916 (2017).
pubmed: 28500755 pmcid: 5476429 doi: 10.7554/eLife.25916
Hayworth, K. J. et al. Gas cluster ion beam SEM for imaging of large tissue samples with 10 nm isotropic resolution. Nat. Methods 17, 68–71 (2020).
pubmed: 31740820 doi: 10.1038/s41592-019-0641-2
Denk, W. & Horstmann, H. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2, e329 (2004).
pubmed: 15514700 pmcid: 524270 doi: 10.1371/journal.pbio.0020329
Leighton, S. B. SEM images of block faces, cut by a miniature microtome within the SEM - a technical note. Scan. Electron Microsc. 1981, 73–76 (1981).
Macrina, T. et al. Petascale neural circuit reconstruction: automated methods. Preprint at bioRxiv https://doi.org/10.1101/2021.08.04.455162 (2021).
Popovych, S. et al. Petascale pipeline for precise alignment of images from serial section electron microscopy. Nat. Commun. 15, 289 (2024).
pubmed: 38177169 pmcid: 10767115 doi: 10.1038/s41467-023-44354-0
Januszewski, M. et al. High-precision automated reconstruction of neurons with flood-filling networks. Nat. Methods 15, 605–610 (2018).
pubmed: 30013046 doi: 10.1038/s41592-018-0049-4
Jain, V. et al. Supervised learning of image restoration with convolutional networks. In Proc. 2007 IEEE 11th International Conference on Computer Vision 636–643 (IEEE, 2007).
Turaga, S. C. et al. Convolutional networks can learn to generate affinity graphs for image segmentation. Neural Comput. 22, 511–538 (2010).
pubmed: 19922289 doi: 10.1162/neco.2009.10-08-881
Maitin-Shepard, J. Neuroglancer. https://github.com/google/neuroglancer (2020).
Verasztó, C. et al. Whole-animal connectome and cell-type complement of the three-segmented Platynereis dumerilii larva. Preprint at bioRxiv https://doi.org/10.1101/2020.08.21.260984 (2020).
Schoofs, A. et al. Serotonergic reinforcement of a complete swallowing circuit. Preprint at bioRxiv https://doi.org/10.1101/2023.05.26.542464 (2023).
Ngai, J. BRAIN 2.0: transforming neuroscience. Cell 185, 4–8 (2022).
pubmed: 34995517 doi: 10.1016/j.cell.2021.11.037
Jefferis, G., Collinson, L., Bosch, C., Costa, M. & Schlegel, P. Scaling up Connectomics: the road to a whole mouse brain connectome (Wellcome, 2023).
Collins, F. S., Morgan, M. & Patrinos, A. The Human Genome Project: lessons from large-scale biology. Science 300, 286–290 (2003).
pubmed: 12690187 doi: 10.1126/science.1084564
Heinrich, L., Funke, J., Pape, C., Nunez-Iglesias, J. & Saalfeld, S. Synaptic cleft segmentation in non-isotropic volume electron microscopy of the complete Drosophila brain. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 (eds Frangi, A. F. et al.) 317–325 (Springer, 2018).
Bates, A. S. et al. The natverse, a versatile toolbox for combining and analysing neuroanatomical data. eLife 9, e53350 (2020).
pubmed: 32286229 pmcid: 7242028 doi: 10.7554/eLife.53350
Mitchell, E., Keselj, S., Popovych, S., Buniatyan, D. & Seung, H. S. Siamese encoding and alignment by multiscale learning with self-supervision. Preprint at https://doi.org/10.48550/arXiv.1904.02643 (2019).
Lee, K., Zung, J., Li, P., Jain, V. & Seung, H. S. Superhuman accuracy on the SNEMI3D Connectomics Challenge. Preprint at https://doi.org/10.48550/arXiv.1706.00120 (2017).
Lu, R., Zlateski, A. & Seung, H. S. Large-scale image segmentation based on distributed clustering algorithms. Preprint at https://doi.org/10.48550/arXiv.2106.10795 (2021).
Lapraz, F. et al. Asymmetric activity of NetrinB controls laterality of the Drosophila brain. Nat. Commun. 14, 1052 (2023).
pubmed: 36828820 pmcid: 9958012 doi: 10.1038/s41467-023-36644-4
Dorkenwald, S. et al. Binary and analog variation of synapses between cortical pyramidal neurons. eLife 11, e76120 (2022).
pubmed: 36382887 pmcid: 9704804 doi: 10.7554/eLife.76120
Kim, J. S. et al. Space-time wiring specificity supports direction selectivity in the retina. Nature 509, 331–336 (2014).
pubmed: 24805243 pmcid: 4074887 doi: 10.1038/nature13240
Brittin, C. A., Cook, S. J., Hall, D. H., Emmons, S. W. & Cohen, N. A multi-scale brain map derived from whole-brain volumetric reconstructions. Nature 591, 105–110 (2021).
pubmed: 33627874 doi: 10.1038/s41586-021-03284-x
Sato, M., Bitter, I., Bender, M. A., Kaufman, A. E. & Nakajima, M. TEASAR: tree-structure extraction algorithm for accurate and robust skeletons. In Proc. 8th Pacific Conference on Computer Graphics and Applications (eds Barsky, B. A. A. et al.) (IEEE, 2000); https://doi.org/10.1109/PCCGA.2000.883951 .
Schlegel, P. et al. navis-org/navis: version 1.5.0. Zenodo https://doi.org/10.5281/ZENODO.8191725 (2023).
McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at https://doi.org/10.48550/arXiv.1802.03426 (2018).

Auteurs

Sven Dorkenwald (S)

Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
Computer Science Department, Princeton University, Princeton, NJ, USA.

Arie Matsliah (A)

Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.

Amy R Sterling (AR)

Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
Eyewire, Boston, MA, USA.

Philipp Schlegel (P)

Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK.

Szi-Chieh Yu (SC)

Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.

Claire E McKellar (CE)

Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.

Albert Lin (A)

Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
Center for the Physics of Biological Function, Princeton University, Princeton, NJ, USA.

Marta Costa (M)

Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK.

Katharina Eichler (K)

Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK.

Yijie Yin (Y)

Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK.

Will Silversmith (W)

Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.

Casey Schneider-Mizell (C)

Allen Institute for Brain Science, Seattle, WA, USA.

Chris S Jordan (CS)

Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.

Derrick Brittain (D)

Allen Institute for Brain Science, Seattle, WA, USA.

Akhilesh Halageri (A)

Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.

Kai Kuehner (K)

Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.

Oluwaseun Ogedengbe (O)

Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.

Ryan Morey (R)

Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.

Jay Gager (J)

Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.

Eric Perlman (E)

Yikes LLC, Baltimore, MD, USA.

Runzhe Yang (R)

Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
Computer Science Department, Princeton University, Princeton, NJ, USA.

David Deutsch (D)

Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
Department of Neurobiology, University of Haifa, Haifa, Israel.

Doug Bland (D)

Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.

Marissa Sorek (M)

Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
Eyewire, Boston, MA, USA.

Ran Lu (R)

Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.

Thomas Macrina (T)

Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
Computer Science Department, Princeton University, Princeton, NJ, USA.

Kisuk Lee (K)

Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA.

J Alexander Bae (JA)

Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
Electrical and Computer Engineering Department, Princeton University, Princeton, NJ, USA.

Shang Mu (S)

Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.

Barak Nehoran (B)

Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
Computer Science Department, Princeton University, Princeton, NJ, USA.

Eric Mitchell (E)

Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.

Sergiy Popovych (S)

Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
Computer Science Department, Princeton University, Princeton, NJ, USA.

Jingpeng Wu (J)

Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.

Zhen Jia (Z)

Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.

Manuel A Castro (MA)

Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.

Nico Kemnitz (N)

Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.

Dodam Ih (D)

Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.

Alexander Shakeel Bates (AS)

Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
Harvard Medical School, Boston, MA, USA.
Centre for Neural Circuits and Behaviour, The University of Oxford, Oxford, UK.

Nils Eckstein (N)

Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.

Jan Funke (J)

Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.

Forrest Collman (F)

Allen Institute for Brain Science, Seattle, WA, USA.

Davi D Bock (DD)

Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, USA.

Gregory S X E Jefferis (GSXE)

Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK.

H Sebastian Seung (HS)

Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA. sseung@princeton.edu.
Computer Science Department, Princeton University, Princeton, NJ, USA. sseung@princeton.edu.

Mala Murthy (M)

Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA. mmurthy@princeton.edu.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH