Rapid homologue juxtaposition during meiotic chromosome pairing.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
02 Oct 2024
02 Oct 2024
Historique:
received:
11
03
2024
accepted:
28
08
2024
medline:
3
10
2024
pubmed:
3
10
2024
entrez:
2
10
2024
Statut:
aheadofprint
Résumé
A central feature of meiosis is the pairing of homologous maternal and paternal chromosomes ('homologues') along their lengths
Identifiants
pubmed: 39358508
doi: 10.1038/s41586-024-07999-5
pii: 10.1038/s41586-024-07999-5
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Zickler, D. & Kleckner, N. Meiosis: dances between homologs. Annu. Rev. Genet. 57, 1–63 (2023).
pubmed: 37788458
doi: 10.1146/annurev-genet-061323-044915
Zickler, D. & Kleckner, N. The leptotene-zygotene transition of meiosis. Annu. Rev. Genet. 32, 619–697 (1998).
pubmed: 9928494
doi: 10.1146/annurev.genet.32.1.619
Zickler, D. & Kleckner, N. Meiotic chromosomes: integrating structure and function. Annu. Rev. Genet. 33, 603–754 (1999).
pubmed: 10690419
doi: 10.1146/annurev.genet.33.1.603
Bennett, M. D. The time and duration of meiosis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 277, 201–226 (1977).
pubmed: 16285
doi: 10.1098/rstb.1977.0012
Jin, Q., Trelles-Sticken, E., Scherthan, H. & Loidl, J. Yeast nuclei display prominent centromere clustering that is reduced in nondividing cells and in meiotic prophase. J. Cell Biol. 141, 21–29 (1998).
pubmed: 9531545
pmcid: 2132713
doi: 10.1083/jcb.141.1.21
Ding, D.-Q., Yamamoto, A., Haraguchi, T. & Hiraoka, Y. Dynamics of homologous chromosome pairing during meiotic prophase in fission yeast. Dev. Cell 6, 329–341 (2004).
pubmed: 15030757
doi: 10.1016/S1534-5807(04)00059-0
Shibuya, H., Morimoto, A. & Watanabe, Y. The dissection of meiotic chromosome movement in mice using an in vivo electroporation technique. PLoS Genet. 10, e1004821 (2014).
pubmed: 25502938
pmcid: 4263375
doi: 10.1371/journal.pgen.1004821
Chacón, M. R., Delivani, P. & Tolić, I. M. Meiotic nuclear oscillations are necessary to avoid excessive chromosome associations. Cell Rep. 17, 1632–1645 (2016).
pubmed: 27806301
doi: 10.1016/j.celrep.2016.10.014
Link, J. & Jantsch, V. Meiotic chromosomes in motion: a perspective from Mus musculus and Caenorhabditis elegans. Chromosoma 128, 317–330 (2019).
pubmed: 30877366
pmcid: 6823321
Fan, J., Jin, H., Koch, B. A. & Yu, H.-G. Mps2 links Csm4 and Mps3 to form a telomere-associated LINC complex in budding yeast. Life Sci. Alliance 3, e202000824 (2020).
pubmed: 32967926
pmcid: 7536833
doi: 10.26508/lsa.202000824
Lee, C.-Y. et al. Extranuclear structural components that mediate dynamic chromosome movements in yeast meiosis. Curr. Biol. 30, 1207–1216.e4 (2020).
pubmed: 32059771
pmcid: 7181386
doi: 10.1016/j.cub.2020.01.054
Nozaki, T., Chang, F., Weiner, B. & Kleckner, N. High temporal resolution 3D live-cell imaging of budding yeast meiosis defines discontinuous actin/telomere-mediated chromosome motion, correlated nuclear envelope deformation and actin filament dynamics. Front. Cell Dev. Biol. 9, 3001 (2021).
doi: 10.3389/fcell.2021.687132
Koszul, R., Kim, K. P., Prentiss, M., Kleckner, N. & Kameoka, S. Meiotic chromosomes move by linkage to dynamic actin cables with transduction of force through the nuclear envelope. Cell 133, 1188–1201 (2008).
pubmed: 18585353
pmcid: 2601696
doi: 10.1016/j.cell.2008.04.050
Scherthan, H. et al. Chromosome mobility during meiotic prophase in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 104, 16934–16939 (2007).
pubmed: 17939997
pmcid: 2040470
doi: 10.1073/pnas.0704860104
Storlazzi, A. et al. Recombination proteins mediate meiotic spatial chromosome organization and pairing. Cell 141, 94–106 (2010).
pubmed: 20371348
pmcid: 2851631
doi: 10.1016/j.cell.2010.02.041
Hunter, N. Meiotic recombination: the essence of heredity. Cold Spring Harb. Perspect. Biol. 7, a016618 (2015).
pubmed: 26511629
pmcid: 4665078
doi: 10.1101/cshperspect.a016618
Dubois, E. et al. Building bridges to move recombination complexes. Proc. Natl Acad. Sci. USA 116, 12400–12409 (2019).
pubmed: 31147459
pmcid: 6589682
doi: 10.1073/pnas.1901237116
Lake, C. M. & Hawley, R. S. Synaptonemal complex. Curr. Biol. 31, R225–R227 (2021).
pubmed: 33689714
doi: 10.1016/j.cub.2021.01.015
Henderson, K. A. & Keeney, S. Synaptonemal complex formation: where does it start? Bioessays 27, 995–998 (2005).
pubmed: 16163735
doi: 10.1002/bies.20310
Bishop, D. K. & Zickler, D. Early decision; meiotic crossover interference prior to stable strand exchange and synapsis. Cell 117, 9–15 (2004).
pubmed: 15066278
doi: 10.1016/S0092-8674(04)00297-1
Zhang, L., Espagne, E., de Muyt, A., Zickler, D. & Kleckner, N. E. Interference-mediated synaptonemal complex formation with embedded crossover designation. Proc. Natl Acad. Sci. USA 111, E5059–E5068 (2014).
pubmed: 25380597
pmcid: 4250137
doi: 10.1073/pnas.1416411111
Ito, M., Fujita, Y. & Shinohara, A. Positive and negative regulators of RAD51/DMC1 in homologous recombination and DNA replication. DNA Repair 134, 103613 (2024).
pubmed: 38142595
doi: 10.1016/j.dnarep.2023.103613
Shinohara, M., Sakai, K., Shinohara, A. & Bishop, D. K. Crossover interference in Saccharomyces cerevisiae requires a TID1/RDH54- and DMC1-dependent pathway. Genetics 163, 1273–1286 (2003).
pubmed: 12702674
pmcid: 1462529
doi: 10.1093/genetics/163.4.1273
Shinohara, A., Gasior, S., Ogawa, T., Kleckner, N. & Bishop, D. K. Saccharomyces cerevisiae recA homologues RAD51 and DMC1 have both distinct and overlapping roles in meiotic recombination. Genes Cells 2, 615–629 (1997).
pubmed: 9427283
doi: 10.1046/j.1365-2443.1997.1480347.x
Sym, M., Engebrecht, J. A. & Roeder, G. S. ZIP1 is a synaptonemal complex protein required for meiotic chromosome synapsis. Cell 72, 365–378 (1993).
pubmed: 7916652
doi: 10.1016/0092-8674(93)90114-6
Brown, M. S., Grubb, J., Zhang, A., Rust, M. J. & Bishop, D. K. Small Rad51 and Dmc1 complexes often co-occupy both ends of a meiotic DNA double strand break. PLoS Genet. 11, e1005653 (2015).
pubmed: 26719980
pmcid: 4697796
doi: 10.1371/journal.pgen.1005653
Börner, G. V., Kleckner, N. & Hunter, N. Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117, 29–45 (2004).
pubmed: 15066280
doi: 10.1016/S0092-8674(04)00292-2
Fung, J. C., Rockmill, B., Odell, M. & Roeder, G. S. Imposition of crossover interference through the nonrandom distribution of synapsis initiation complexes. Cell 116, 795–802 (2004).
pubmed: 15035982
doi: 10.1016/S0092-8674(04)00249-1
Kim, K. P. et al. Sister cohesion and structural axis components mediate homolog bias of meiotic recombination. Cell 143, 924–937 (2010).
pubmed: 21145459
pmcid: 3033573
doi: 10.1016/j.cell.2010.11.015
Borde, V., Goldman, A. S. & Lichten, M. Direct coupling between meiotic DNA replication and recombination initiation. Science 290, 806–809 (2000).
pubmed: 11052944
doi: 10.1126/science.290.5492.806
Pratto, F. et al. Meiotic recombination mirrors patterns of germline replication in mice and humans. Cell 184, 4251–4267.e20 (2021).
pubmed: 34260899
pmcid: 8591710
doi: 10.1016/j.cell.2021.06.025
Wanat, J. J. et al. Csm4, in collaboration with Ndj1, mediates telomere-led chromosome dynamics and recombination during yeast meiosis. PLoS Genet. 4, e1000188 (2008).
pubmed: 18818741
pmcid: 2533701
doi: 10.1371/journal.pgen.1000188
He, W. et al. Regulated proteolysis of MutSγ controls meiotic crossing over. Mol. Cell 78, 168–183.e5 (2020).
pubmed: 32130890
pmcid: 7289160
doi: 10.1016/j.molcel.2020.02.001
Goldman, A. S. & Lichten, M. Restriction of ectopic recombination by interhomolog interactions during Saccharomyces cerevisiae meiosis. Proc. Natl Acad. Sci. USA 97, 9537–9542 (2000).
pubmed: 10944222
pmcid: 16900
doi: 10.1073/pnas.97.17.9537
Ganji, M. et al. Real-time imaging of DNA loop extrusion by condensin. Science 360, 102–105 (2018).
pubmed: 29472443
pmcid: 6329450
doi: 10.1126/science.aar7831
Kong, M. et al. Human Condensin I and II drive extensive ATP-dependent compaction of nucleosome-bound DNA. Mol. Cell 79, 99–114.e9 (2020).
pubmed: 32445620
pmcid: 7335352
doi: 10.1016/j.molcel.2020.04.026
Strom, A. R. et al. Condensate interfacial forces reposition DNA loci and probe chromatin viscoelasticity. Cell 187, 5282–5297.e20 (2024).
Tang, M. et al. Establishment of dsDNA-dsDNA interactions by the condensin complex. Mol. Cell 83, 3787–3800.e9 (2023).
pubmed: 37820734
pmcid: 10842940
doi: 10.1016/j.molcel.2023.09.019
White, M. A., Weiner, B., Chu, L., Lim, G. & Kleckner, N. E. Crossover interference mediates multiscale patterning along meiotic chromosomes. Preprint at bioRxiv https://doi.org/10.1101/2024.01.28.577645 (2024).
de Boer, E., Stam, P., Dietrich, A. J. J., Pastink, A. & Heyting, C. Two levels of interference in mouse meiotic recombination. Proc. Natl Acad. Sci. USA 103, 9607–9612 (2006).
pubmed: 16766662
pmcid: 1475796
doi: 10.1073/pnas.0600418103
Yadav, V. K. & Claeys Bouuaert, C. Mechanism and control of meiotic DNA double-strand break formation in S. cerevisiae. Front. Cell Dev. Biol. 9, 642737 (2021).
pubmed: 33748134
pmcid: 7968521
doi: 10.3389/fcell.2021.642737
Anderson, L. K. & Stack, S. M. Nodules associated with axial cores and synaptonemal complexes during zygotene in Psilotum nudum. Chromosoma 97, 96–100 (1988).
doi: 10.1007/BF00331799
Koornneef, L. et al. Chromosome pairing through tensioned DNA tethers revealed by BRCA2 meiotic domain deletion. Preprint at bioRxiv https://doi.org/10.1101/2023.10.06.561239 (2023).
Holm, P. B. Three-dimensional reconstruction of chromosome pairing during the zygotene stage of meiosis in Lilium longiflorum (Thunb.). Carlsberg Res. Commun. 42, 103 (1977).
doi: 10.1007/BF02906489
Kezer, J., Sessions, S. K. & León, P. The meiotic structure and behavior of the strongly heteromorphic X/Y sex chromosomes of neotropical plethodontid salamanders of the genus Oedipina. Chromosoma 98, 433–442 (1989).
doi: 10.1007/BF00292789
Zickler, D. Development of the synaptonemal complex and the ‘recombination nodules’ during meiotic prophase in the seven bivalents of the fungus Sordaria macrospora Auersw. Chromosoma 61, 289–316 (1977).
pubmed: 880839
doi: 10.1007/BF00288615
Zhang, L., Liang, Z., Hutchinson, J. & Kleckner, N. Crossover patterning by the beam-film model: analysis and implications. PLoS Genet. 10, e1004042 (2014).
pubmed: 24497834
pmcid: 3907302
doi: 10.1371/journal.pgen.1004042
Lau, I. F. et al. Spatial and temporal organization of replicating Escherichia coli chromosomes. Mol. Microbiol. 49, 731–743 (2003).
pubmed: 12864855
doi: 10.1046/j.1365-2958.2003.03640.x
Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).
pubmed: 15558047
doi: 10.1038/nbt1037
Edelstein, A. D. et al. Advanced methods of microscope control using μManager software. J. Biol. Methods 1, e10 (2014).
pubmed: 25606571
doi: 10.14440/jbm.2014.36
Chang, F. Low SNR Computational Pattern Detection Applied to Multi-spectral 3D Molecular Dynamics. PhD thesis, Harvard Univ. https://dash.harvard.edu/handle/1/42015127 (2018).
Tinevez, J.-Y. et al. TrackMate: an open and extensible platform for single-particle tracking. Methods 115, 80–90 (2017).
pubmed: 27713081
doi: 10.1016/j.ymeth.2016.09.016
Killick, R. & Eckley, I. A. Changepoint: an R package for changepoint analysis. J. Stat. Softw. 58, 1–19 (2014).
doi: 10.18637/jss.v058.i03
Miné-Hattab, J. & Rothstein, R. Increased chromosome mobility facilitates homology search during recombination. Nat. Cell Biol. 14, 510–517 (2012).
pubmed: 22484485
doi: 10.1038/ncb2472
Hunter, N. & Kleckner, N. The single-end invasion: an asymmetric intermediate at the double-strand break to double-holliday junction transition of meiotic recombination. Cell 106, 59–70 (2001).
pubmed: 11461702
doi: 10.1016/S0092-8674(01)00430-5
Conrad, M. N. et al. Rapid telomere movement in meiotic prophase is promoted by NDJ1, MPS3, and CSM4 and is modulated by recombination. Cell 133, 1175–1187 (2008).
pubmed: 18585352
doi: 10.1016/j.cell.2008.04.047