Rapid homologue juxtaposition during meiotic chromosome pairing.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
02 Oct 2024
Historique:
received: 11 03 2024
accepted: 28 08 2024
medline: 3 10 2024
pubmed: 3 10 2024
entrez: 2 10 2024
Statut: aheadofprint

Résumé

A central feature of meiosis is the pairing of homologous maternal and paternal chromosomes ('homologues') along their lengths

Identifiants

pubmed: 39358508
doi: 10.1038/s41586-024-07999-5
pii: 10.1038/s41586-024-07999-5
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Zickler, D. & Kleckner, N. Meiosis: dances between homologs. Annu. Rev. Genet. 57, 1–63 (2023).
pubmed: 37788458 doi: 10.1146/annurev-genet-061323-044915
Zickler, D. & Kleckner, N. The leptotene-zygotene transition of meiosis. Annu. Rev. Genet. 32, 619–697 (1998).
pubmed: 9928494 doi: 10.1146/annurev.genet.32.1.619
Zickler, D. & Kleckner, N. Meiotic chromosomes: integrating structure and function. Annu. Rev. Genet. 33, 603–754 (1999).
pubmed: 10690419 doi: 10.1146/annurev.genet.33.1.603
Bennett, M. D. The time and duration of meiosis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 277, 201–226 (1977).
pubmed: 16285 doi: 10.1098/rstb.1977.0012
Jin, Q., Trelles-Sticken, E., Scherthan, H. & Loidl, J. Yeast nuclei display prominent centromere clustering that is reduced in nondividing cells and in meiotic prophase. J. Cell Biol. 141, 21–29 (1998).
pubmed: 9531545 pmcid: 2132713 doi: 10.1083/jcb.141.1.21
Ding, D.-Q., Yamamoto, A., Haraguchi, T. & Hiraoka, Y. Dynamics of homologous chromosome pairing during meiotic prophase in fission yeast. Dev. Cell 6, 329–341 (2004).
pubmed: 15030757 doi: 10.1016/S1534-5807(04)00059-0
Shibuya, H., Morimoto, A. & Watanabe, Y. The dissection of meiotic chromosome movement in mice using an in vivo electroporation technique. PLoS Genet. 10, e1004821 (2014).
pubmed: 25502938 pmcid: 4263375 doi: 10.1371/journal.pgen.1004821
Chacón, M. R., Delivani, P. & Tolić, I. M. Meiotic nuclear oscillations are necessary to avoid excessive chromosome associations. Cell Rep. 17, 1632–1645 (2016).
pubmed: 27806301 doi: 10.1016/j.celrep.2016.10.014
Link, J. & Jantsch, V. Meiotic chromosomes in motion: a perspective from Mus musculus and Caenorhabditis elegans. Chromosoma 128, 317–330 (2019).
pubmed: 30877366 pmcid: 6823321
Fan, J., Jin, H., Koch, B. A. & Yu, H.-G. Mps2 links Csm4 and Mps3 to form a telomere-associated LINC complex in budding yeast. Life Sci. Alliance 3, e202000824 (2020).
pubmed: 32967926 pmcid: 7536833 doi: 10.26508/lsa.202000824
Lee, C.-Y. et al. Extranuclear structural components that mediate dynamic chromosome movements in yeast meiosis. Curr. Biol. 30, 1207–1216.e4 (2020).
pubmed: 32059771 pmcid: 7181386 doi: 10.1016/j.cub.2020.01.054
Nozaki, T., Chang, F., Weiner, B. & Kleckner, N. High temporal resolution 3D live-cell imaging of budding yeast meiosis defines discontinuous actin/telomere-mediated chromosome motion, correlated nuclear envelope deformation and actin filament dynamics. Front. Cell Dev. Biol. 9, 3001 (2021).
doi: 10.3389/fcell.2021.687132
Koszul, R., Kim, K. P., Prentiss, M., Kleckner, N. & Kameoka, S. Meiotic chromosomes move by linkage to dynamic actin cables with transduction of force through the nuclear envelope. Cell 133, 1188–1201 (2008).
pubmed: 18585353 pmcid: 2601696 doi: 10.1016/j.cell.2008.04.050
Scherthan, H. et al. Chromosome mobility during meiotic prophase in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 104, 16934–16939 (2007).
pubmed: 17939997 pmcid: 2040470 doi: 10.1073/pnas.0704860104
Storlazzi, A. et al. Recombination proteins mediate meiotic spatial chromosome organization and pairing. Cell 141, 94–106 (2010).
pubmed: 20371348 pmcid: 2851631 doi: 10.1016/j.cell.2010.02.041
Hunter, N. Meiotic recombination: the essence of heredity. Cold Spring Harb. Perspect. Biol. 7, a016618 (2015).
pubmed: 26511629 pmcid: 4665078 doi: 10.1101/cshperspect.a016618
Dubois, E. et al. Building bridges to move recombination complexes. Proc. Natl Acad. Sci. USA 116, 12400–12409 (2019).
pubmed: 31147459 pmcid: 6589682 doi: 10.1073/pnas.1901237116
Lake, C. M. & Hawley, R. S. Synaptonemal complex. Curr. Biol. 31, R225–R227 (2021).
pubmed: 33689714 doi: 10.1016/j.cub.2021.01.015
Henderson, K. A. & Keeney, S. Synaptonemal complex formation: where does it start? Bioessays 27, 995–998 (2005).
pubmed: 16163735 doi: 10.1002/bies.20310
Bishop, D. K. & Zickler, D. Early decision; meiotic crossover interference prior to stable strand exchange and synapsis. Cell 117, 9–15 (2004).
pubmed: 15066278 doi: 10.1016/S0092-8674(04)00297-1
Zhang, L., Espagne, E., de Muyt, A., Zickler, D. & Kleckner, N. E. Interference-mediated synaptonemal complex formation with embedded crossover designation. Proc. Natl Acad. Sci. USA 111, E5059–E5068 (2014).
pubmed: 25380597 pmcid: 4250137 doi: 10.1073/pnas.1416411111
Ito, M., Fujita, Y. & Shinohara, A. Positive and negative regulators of RAD51/DMC1 in homologous recombination and DNA replication. DNA Repair 134, 103613 (2024).
pubmed: 38142595 doi: 10.1016/j.dnarep.2023.103613
Shinohara, M., Sakai, K., Shinohara, A. & Bishop, D. K. Crossover interference in Saccharomyces cerevisiae requires a TID1/RDH54- and DMC1-dependent pathway. Genetics 163, 1273–1286 (2003).
pubmed: 12702674 pmcid: 1462529 doi: 10.1093/genetics/163.4.1273
Shinohara, A., Gasior, S., Ogawa, T., Kleckner, N. & Bishop, D. K. Saccharomyces cerevisiae recA homologues RAD51 and DMC1 have both distinct and overlapping roles in meiotic recombination. Genes Cells 2, 615–629 (1997).
pubmed: 9427283 doi: 10.1046/j.1365-2443.1997.1480347.x
Sym, M., Engebrecht, J. A. & Roeder, G. S. ZIP1 is a synaptonemal complex protein required for meiotic chromosome synapsis. Cell 72, 365–378 (1993).
pubmed: 7916652 doi: 10.1016/0092-8674(93)90114-6
Brown, M. S., Grubb, J., Zhang, A., Rust, M. J. & Bishop, D. K. Small Rad51 and Dmc1 complexes often co-occupy both ends of a meiotic DNA double strand break. PLoS Genet. 11, e1005653 (2015).
pubmed: 26719980 pmcid: 4697796 doi: 10.1371/journal.pgen.1005653
Börner, G. V., Kleckner, N. & Hunter, N. Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117, 29–45 (2004).
pubmed: 15066280 doi: 10.1016/S0092-8674(04)00292-2
Fung, J. C., Rockmill, B., Odell, M. & Roeder, G. S. Imposition of crossover interference through the nonrandom distribution of synapsis initiation complexes. Cell 116, 795–802 (2004).
pubmed: 15035982 doi: 10.1016/S0092-8674(04)00249-1
Kim, K. P. et al. Sister cohesion and structural axis components mediate homolog bias of meiotic recombination. Cell 143, 924–937 (2010).
pubmed: 21145459 pmcid: 3033573 doi: 10.1016/j.cell.2010.11.015
Borde, V., Goldman, A. S. & Lichten, M. Direct coupling between meiotic DNA replication and recombination initiation. Science 290, 806–809 (2000).
pubmed: 11052944 doi: 10.1126/science.290.5492.806
Pratto, F. et al. Meiotic recombination mirrors patterns of germline replication in mice and humans. Cell 184, 4251–4267.e20 (2021).
pubmed: 34260899 pmcid: 8591710 doi: 10.1016/j.cell.2021.06.025
Wanat, J. J. et al. Csm4, in collaboration with Ndj1, mediates telomere-led chromosome dynamics and recombination during yeast meiosis. PLoS Genet. 4, e1000188 (2008).
pubmed: 18818741 pmcid: 2533701 doi: 10.1371/journal.pgen.1000188
He, W. et al. Regulated proteolysis of MutSγ controls meiotic crossing over. Mol. Cell 78, 168–183.e5 (2020).
pubmed: 32130890 pmcid: 7289160 doi: 10.1016/j.molcel.2020.02.001
Goldman, A. S. & Lichten, M. Restriction of ectopic recombination by interhomolog interactions during Saccharomyces cerevisiae meiosis. Proc. Natl Acad. Sci. USA 97, 9537–9542 (2000).
pubmed: 10944222 pmcid: 16900 doi: 10.1073/pnas.97.17.9537
Ganji, M. et al. Real-time imaging of DNA loop extrusion by condensin. Science 360, 102–105 (2018).
pubmed: 29472443 pmcid: 6329450 doi: 10.1126/science.aar7831
Kong, M. et al. Human Condensin I and II drive extensive ATP-dependent compaction of nucleosome-bound DNA. Mol. Cell 79, 99–114.e9 (2020).
pubmed: 32445620 pmcid: 7335352 doi: 10.1016/j.molcel.2020.04.026
Strom, A. R. et al. Condensate interfacial forces reposition DNA loci and probe chromatin viscoelasticity. Cell 187, 5282–5297.e20 (2024).
Tang, M. et al. Establishment of dsDNA-dsDNA interactions by the condensin complex. Mol. Cell 83, 3787–3800.e9 (2023).
pubmed: 37820734 pmcid: 10842940 doi: 10.1016/j.molcel.2023.09.019
White, M. A., Weiner, B., Chu, L., Lim, G. & Kleckner, N. E. Crossover interference mediates multiscale patterning along meiotic chromosomes. Preprint at bioRxiv https://doi.org/10.1101/2024.01.28.577645 (2024).
de Boer, E., Stam, P., Dietrich, A. J. J., Pastink, A. & Heyting, C. Two levels of interference in mouse meiotic recombination. Proc. Natl Acad. Sci. USA 103, 9607–9612 (2006).
pubmed: 16766662 pmcid: 1475796 doi: 10.1073/pnas.0600418103
Yadav, V. K. & Claeys Bouuaert, C. Mechanism and control of meiotic DNA double-strand break formation in S. cerevisiae. Front. Cell Dev. Biol. 9, 642737 (2021).
pubmed: 33748134 pmcid: 7968521 doi: 10.3389/fcell.2021.642737
Anderson, L. K. & Stack, S. M. Nodules associated with axial cores and synaptonemal complexes during zygotene in Psilotum nudum. Chromosoma 97, 96–100 (1988).
doi: 10.1007/BF00331799
Koornneef, L. et al. Chromosome pairing through tensioned DNA tethers revealed by BRCA2 meiotic domain deletion. Preprint at bioRxiv https://doi.org/10.1101/2023.10.06.561239 (2023).
Holm, P. B. Three-dimensional reconstruction of chromosome pairing during the zygotene stage of meiosis in Lilium longiflorum (Thunb.). Carlsberg Res. Commun. 42, 103 (1977).
doi: 10.1007/BF02906489
Kezer, J., Sessions, S. K. & León, P. The meiotic structure and behavior of the strongly heteromorphic X/Y sex chromosomes of neotropical plethodontid salamanders of the genus Oedipina. Chromosoma 98, 433–442 (1989).
doi: 10.1007/BF00292789
Zickler, D. Development of the synaptonemal complex and the ‘recombination nodules’ during meiotic prophase in the seven bivalents of the fungus Sordaria macrospora Auersw. Chromosoma 61, 289–316 (1977).
pubmed: 880839 doi: 10.1007/BF00288615
Zhang, L., Liang, Z., Hutchinson, J. & Kleckner, N. Crossover patterning by the beam-film model: analysis and implications. PLoS Genet. 10, e1004042 (2014).
pubmed: 24497834 pmcid: 3907302 doi: 10.1371/journal.pgen.1004042
Lau, I. F. et al. Spatial and temporal organization of replicating Escherichia coli chromosomes. Mol. Microbiol. 49, 731–743 (2003).
pubmed: 12864855 doi: 10.1046/j.1365-2958.2003.03640.x
Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).
pubmed: 15558047 doi: 10.1038/nbt1037
Edelstein, A. D. et al. Advanced methods of microscope control using μManager software. J. Biol. Methods 1, e10 (2014).
pubmed: 25606571 doi: 10.14440/jbm.2014.36
Chang, F. Low SNR Computational Pattern Detection Applied to Multi-spectral 3D Molecular Dynamics. PhD thesis, Harvard Univ. https://dash.harvard.edu/handle/1/42015127 (2018).
Tinevez, J.-Y. et al. TrackMate: an open and extensible platform for single-particle tracking. Methods 115, 80–90 (2017).
pubmed: 27713081 doi: 10.1016/j.ymeth.2016.09.016
Killick, R. & Eckley, I. A. Changepoint: an R package for changepoint analysis. J. Stat. Softw. 58, 1–19 (2014).
doi: 10.18637/jss.v058.i03
Miné-Hattab, J. & Rothstein, R. Increased chromosome mobility facilitates homology search during recombination. Nat. Cell Biol. 14, 510–517 (2012).
pubmed: 22484485 doi: 10.1038/ncb2472
Hunter, N. & Kleckner, N. The single-end invasion: an asymmetric intermediate at the double-strand break to double-holliday junction transition of meiotic recombination. Cell 106, 59–70 (2001).
pubmed: 11461702 doi: 10.1016/S0092-8674(01)00430-5
Conrad, M. N. et al. Rapid telomere movement in meiotic prophase is promoted by NDJ1, MPS3, and CSM4 and is modulated by recombination. Cell 133, 1175–1187 (2008).
pubmed: 18585352 doi: 10.1016/j.cell.2008.04.047

Auteurs

Tadasu Nozaki (T)

Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.

Beth Weiner (B)

Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.

Nancy Kleckner (N)

Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA. kleckner@fas.harvard.edu.

Classifications MeSH