Microbiome-metabolite linkages drive greenhouse gas dynamics over a permafrost thaw gradient.
Journal
Nature microbiology
ISSN: 2058-5276
Titre abrégé: Nat Microbiol
Pays: England
ID NLM: 101674869
Informations de publication
Date de publication:
01 Oct 2024
01 Oct 2024
Historique:
received:
21
12
2023
accepted:
30
07
2024
medline:
2
10
2024
pubmed:
2
10
2024
entrez:
1
10
2024
Statut:
aheadofprint
Résumé
Interactions between microbiomes and metabolites play crucial roles in the environment, yet how these interactions drive greenhouse gas emissions during ecosystem changes remains unclear. Here we analysed microbial and metabolite composition across a permafrost thaw gradient in Stordalen Mire, Sweden, using paired genome-resolved metagenomics and high-resolution Fourier transform ion cyclotron resonance mass spectrometry guided by principles from community assembly theory to test whether microorganisms and metabolites show concordant responses to changing drivers. Our analysis revealed divergence between the inferred microbial versus metabolite assembly processes, suggesting distinct responses to the same selective pressures. This contradicts common assumptions in trait-based microbial models and highlights the limitations of measuring microbial community-level data alone. Furthermore, feature-scale analysis revealed connections between microbial taxa, metabolites and observed CO
Identifiants
pubmed: 39354152
doi: 10.1038/s41564-024-01800-z
pii: 10.1038/s41564-024-01800-z
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : DOE | SC | Biological and Environmental Research (BER)
ID : DE-SC0021349
Organisme : NSF | Directorate for Biological Sciences (BIO)
ID : 2022070
Organisme : NSF | Directorate for Biological Sciences (BIO)
ID : 2022070
Organisme : NSF | Directorate for Biological Sciences (BIO)
ID : 2022070
Organisme : NSF | Directorate for Biological Sciences (BIO)
ID : 2022070
Organisme : NSF | Directorate for Biological Sciences (BIO)
ID : 2022070
Organisme : NSF | Directorate for Biological Sciences (BIO)
ID : 2022070
Organisme : NSF | Directorate for Biological Sciences (BIO)
ID : 2022070
Organisme : NSF | Directorate for Biological Sciences (BIO)
ID : 2022070
Organisme : NSF | Directorate for Biological Sciences (BIO)
ID : 2022070
Organisme : NSF | Directorate for Biological Sciences (BIO)
ID : 2022070
Organisme : NSF | Directorate for Biological Sciences (BIO)
ID : 2022070
Organisme : NSF | Directorate for Biological Sciences (BIO)
ID : 2022070
Investigateurs
Suzanne B Hodgkins
(SB)
Rhiannon Mondav
(R)
Jennifer E Cross
(J)
Maria Florencia Fahnestock
(MF)
Regis Ferriere
(R)
Michael Ibba
(M)
Scott R Saleska
(SR)
Ruth K Varner
(RK)
Ahmed A Zayed
(AA)
Informations de copyright
© 2024. The Author(s).
Références
Ma, L. et al. A globally robust relationship between water table decline, subsidence rate, and carbon release from peatlands. Commun. Earth Environ. 3, 254 (2022).
doi: 10.1038/s43247-022-00590-8
Tanentzap, A. J. et al. Chemical and microbial diversity covary in fresh water to influence ecosystem functioning. Proc. Natl Acad. Sci. USA 116, 24689–24695 (2019).
pubmed: 31740592
pmcid: 6900631
doi: 10.1073/pnas.1904896116
Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).
pubmed: 30013118
doi: 10.1038/s41586-018-0338-1
Dettmer, K., Aronov, P. A. & Hammock, B. D. Mass spectrometry-based metabolomics. Mass Spectrom. Rev. 26, 51–78 (2007).
pubmed: 16921475
pmcid: 1904337
doi: 10.1002/mas.20108
Shah, R. M. et al. Omics-based ecosurveillance uncovers the influence of estuarine macrophytes on sediment microbial function and metabolic redundancy in a tropical ecosystem. Sci. Total Environ. 809, 151175 (2022).
pubmed: 34699819
doi: 10.1016/j.scitotenv.2021.151175
Jansson, J. K. & Hofmockel, K. S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 18, 35–46 (2020).
pubmed: 31586158
doi: 10.1038/s41579-019-0265-7
Turnbaugh, P. J. & Gordon, J. I. An invitation to the marriage of metagenomics and metabolomics. Cell 134, 708–713 (2008).
pubmed: 18775300
doi: 10.1016/j.cell.2008.08.025
Bauermeister, A., Mannochio-Russo, H., Costa-Lotufo, L. V., Jarmusch, A. K. & Dorrestein, P. C. Mass spectrometry-based metabolomics in microbiome investigations. Nat. Rev. Microbiol. 20, 143–160 (2022).
pubmed: 34552265
doi: 10.1038/s41579-021-00621-9
Peñuelas, J. & Sardans, J. Ecological metabolomics. Chem. Ecol. 25, 305–309 (2009).
doi: 10.1080/02757540903062517
Jones, O. A. H. et al. Metabolomic analysis of soil communities can be used for pollution assessment. Environ. Toxicol. Chem. 33, 61–64 (2014).
pubmed: 24122881
doi: 10.1002/etc.2418
Sokol, N. W., Sanderman, J. & Bradford, M. A. Pathways of mineral‐associated soil organic matter formation: integrating the role of plant carbon source, chemistry, and point of entry. Glob. Change Biol. 25, 12–24 (2019).
doi: 10.1111/gcb.14482
Tang, J. & Riley, W. J. Weaker soil carbon–climate feedbacks resulting from microbial and abiotic interactions. Nat. Clim. Change 5, 56–60 (2015).
doi: 10.1038/nclimate2438
Danczak, R. E. et al. Using metacommunity ecology to understand environmental metabolomes. Nat. Commun. 11, 6369 (2020).
pubmed: 33311510
pmcid: 7732844
doi: 10.1038/s41467-020-19989-y
Graham, E. B. et al. Multi’omics comparison reveals metabolome biochemistry, not microbiome composition or gene expression, corresponds to elevated biogeochemical function in the hyporheic zone. Sci. Total Environ. 642, 742–753 (2018).
pubmed: 29920461
doi: 10.1016/j.scitotenv.2018.05.256
Danczak, R. E. et al. Inferring the contribution of microbial taxa and organic matter molecular formulas to ecological assembly. Front. Microbiol. 13, 803420 (2022).
pubmed: 35250925
pmcid: 8894727
doi: 10.3389/fmicb.2022.803420
Chase, J. M. & Myers, J. A. Disentangling the importance of ecological niches from stochastic processes across scales. Philos. Trans. R. Soc. B 366, 2351–2363 (2011).
doi: 10.1098/rstb.2011.0063
Leibold, M. A. The niche concept revisited: mechanistic models and community context. Ecology 76, 1371–1382 (1995).
doi: 10.2307/1938141
Stegen, J. C., Lin, X., Fredrickson, J. K. & Konopka, A. E. Estimating and mapping ecological processes influencing microbial community assembly. Front. Microbiol. 6, 370 (2015).
pubmed: 25983725
pmcid: 4416444
doi: 10.3389/fmicb.2015.00370
Stegen, J. C., Lin, X., Konopka, A. E. & Fredrickson, J. K. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 6, 1653–1664 (2012).
pubmed: 22456445
pmcid: 3498916
doi: 10.1038/ismej.2012.22
Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018).
pubmed: 30013236
pmcid: 6786970
doi: 10.1038/s41564-018-0190-y
Johansson, T. et al. Decadal vegetation changes in a northern peatland, greenhouse gas fluxes and net radiative forcing. Glob. Change Biol. 12, 2352–2369 (2006).
doi: 10.1111/j.1365-2486.2006.01267.x
Hough, M. et al. Coupling plant litter quantity to a novel metric for litter quality explains C storage changes in a thawing permafrost peatland. Glob. Change Biol. 28, 950–968 (2022).
doi: 10.1111/gcb.15970
AminiTabrizi, R. et al. Controls on soil organic matter degradation and subsequent greenhouse gas emissions across a permafrost thaw gradient in Northern Sweden. Front. Earth Sci. 8, 557961 (2020).
doi: 10.3389/feart.2020.557961
Hodgkins, S. B. et al. Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production. Proc. Natl Acad. Sci. USA 111, 5819–5824 (2014).
pubmed: 24711402
pmcid: 4000816
doi: 10.1073/pnas.1314641111
Hodgkins, S. B. et al. Elemental composition and optical properties reveal changes in dissolved organic matter along a permafrost thaw chronosequence in a subarctic peatland. Geochim. Cosmochim. Acta 187, 123–140 (2016).
doi: 10.1016/j.gca.2016.05.015
Wilson, R. M. et al. Plant organic matter inputs exert a strong control on soil organic matter decomposition in a thawing permafrost peatland. Sci. Total Environ. 820, 152757 (2022).
pubmed: 35031367
doi: 10.1016/j.scitotenv.2021.152757
Varner, R. K. et al. Permafrost thaw driven changes in hydrology and vegetation cover increase trace gas emissions and climate forcing in Stordalen Mire from 1970 to 2014. Philos. Trans. R. Soc. A 380, 20210022 (2022).
doi: 10.1098/rsta.2021.0022
Dini-Andreote, F., Stegen, J. C., Van Elsas, J. D. & Salles, J. F. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc. Natl Acad. Sci. USA 112, E1326–E1332 (2015).
pubmed: 25733885
pmcid: 4371938
doi: 10.1073/pnas.1414261112
Doherty, S. J. et al. The transition from stochastic to deterministic bacterial community assembly during permafrost thaw succession. Front. Microbiol. 11, 596589 (2020).
pubmed: 33281795
pmcid: 7691490
doi: 10.3389/fmicb.2020.596589
Mondav, R. et al. Microbial network, phylogenetic diversity and community membership in the active layer across a permafrost thaw gradient. Environ. Microbiol. 19, 3201–3218 (2017).
pubmed: 28574203
doi: 10.1111/1462-2920.13809
Cronin D. & NSF EMERGE Biology Integration Institute Metagenome-assembled genomes (MAGs) from Stordalen Mire, Sweden (0.0.1-beta). Zenodo https://doi.org/10.5281/zenodo.10426238 (2023).
McGivern, B. B. et al. Microbial polyphenol metabolism is part of the thawing permafrost carbon cycle. Nat. Microbiol. 9, 1454–1466 (2024).
pubmed: 38806673
pmcid: 11153144
doi: 10.1038/s41564-024-01691-0
Fudyma, J. D. et al. Untargeted metabolomic profiling of Sphagnum fallax reveals novel antimicrobial metabolites. Plant Direct 3, e00179 (2019).
pubmed: 31742243
pmcid: 6848953
doi: 10.1002/pld3.179
Andersen, R., Chapman, S. & Artz, R. Microbial communities in natural and disturbed peatlands: a review. Soil Biol. Biochem. 57, 979–994 (2013).
doi: 10.1016/j.soilbio.2012.10.003
McGivern, B. B. et al. Decrypting bacterial polyphenol metabolism in an anoxic wetland soil. Nat. Commun. 12, 2466 (2021).
pubmed: 33927199
pmcid: 8084988
doi: 10.1038/s41467-021-22765-1
Fudyma, J. D., Chu, R. K., Graf Grachet, N., Stegen, J. C. & Tfaily, M. M. Coupled biotic–abiotic processes control biogeochemical cycling of dissolved organic matter in the Columbia River hyporheic zone. Front. Water 2, 574692 (2021).
doi: 10.3389/frwa.2020.574692
Danczak, R. E. et al. Ecological theory applied to environmental metabolomes reveals compositional divergence despite conserved molecular properties. Sci. Total Environ. 788, 147409 (2021).
pubmed: 34022577
doi: 10.1016/j.scitotenv.2021.147409
Holmes, M. E. et al. Carbon accumulation, flux, and fate in Stordalen Mire, a permafrost peatland in transition. Glob. Biogeochem. Cycles 36, e2021GB007113 (2022).
doi: 10.1029/2021GB007113
McCalley, C. K. et al. Methane dynamics regulated by microbial community response to permafrost thaw. Nature 514, 478–481 (2014).
pubmed: 25341787
doi: 10.1038/nature13798
Ning, D. et al. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nat. Commun. 11, 4717 (2020).
pubmed: 32948774
pmcid: 7501310
doi: 10.1038/s41467-020-18560-z
Jansson, J. K. & Hofmockel, K. S. The soil microbiome—from metagenomics to metaphenomics. Curr. Opin. Microbiol. 43, 162–168 (2018).
pubmed: 29454931
doi: 10.1016/j.mib.2018.01.013
Wilson, R. M. & Tfaily, M. M. Advanced molecular techniques provide new rigorous tools for characterizing organic matter quality in complex systems. J. Geophys. Res. Biogeosci. 123, 1790–1795 (2018).
doi: 10.1029/2018JG004525
Urban, N. R., Eisenreich, S. J. & Grigal, D. F. Sulfur cycling in a forested Sphagnum bog in northern Minnesota. Biogeochemistry 7, 81–109 (1989).
doi: 10.1007/BF00004123
Herndon, E., Richardson, J., Carrell, A. A., Pierce, E. & Weston, D. Sulfur speciation in Sphagnum peat moss modified by mutualistic interactions with cyanobacteria. New Phytol. 241, 1998–2008 (2024).
pubmed: 38135655
doi: 10.1111/nph.19476
Fofana A. et al. Mapping substrate use across a permafrost thaw gradient. Soil Biol. Biochem. 108809 (2022).
Fakhraee, M., Li, J. & Katsev, S. Significant role of organic sulfur in supporting sedimentary sulfate reduction in low-sulfate environments. Geochim. Cosmochim. Acta 213, 502–516 (2017).
doi: 10.1016/j.gca.2017.07.021
Blodau, C., Mayer, B., Peiffer, S. & Moore, T. R. Support for an anaerobic sulfur cycle in two Canadian peatland soils. J. Geophys. Res. Biogeosci. 112, G02004 (2007).
doi: 10.1029/2006JG000364
Candry, P., Abrahamson, B., Stahl, D. A. & Winkler, M.-K. H. Microbially mediated climate feedbacks from wetland ecosystems. Glob. Change Biol. 29, 5169–5183 (2023).
doi: 10.1111/gcb.16850
Pester, M., Knorr, K.-H., Friedrich, M. W., Wagner, M. & Loy, A. Sulfate-reducing microorganisms in wetlands—fameless actors in carbon cycling and climate change. Front. Microbiol. 3, 72 (2012).
pubmed: 22403575
pmcid: 3289269
doi: 10.3389/fmicb.2012.00072
Alperin, M. J. & Hoehler, T. M. Anaerobic methane oxidation by archaea/sulfate-reducing bacteria aggregates: 1. Thermodynamic and physical constraints. Am. J. Sci. 309, 869–957 (2009).
doi: 10.2475/10.2009.01
Moran, J. J. et al. Methyl sulfides as intermediates in the anaerobic oxidation of methane. Environ. Microbiol. 10, 162–173 (2008).
pubmed: 17903217
doi: 10.1111/j.1462-2920.2007.01441.x
McGlynn, S. E., Chadwick, G. L., Kempes, C. P. & Orphan, V. J. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526, 531–535 (2015).
pubmed: 26375009
doi: 10.1038/nature15512
Graham, E. B. et al. Coupling spatiotemporal community assembly processes to changes in microbial metabolism. Front. Microbiol. 7, 1949 (2016).
pubmed: 28123379
pmcid: 5226446
doi: 10.3389/fmicb.2016.01949
Singleton, C. M. et al. Methanotrophy across a natural permafrost thaw environment. ISME J. 12, 2544–2558 (2018).
pubmed: 29955139
pmcid: 6155033
doi: 10.1038/s41396-018-0065-5
Reji, L. & Zhang, X. Genome-resolved metagenomics informs the functional ecology of uncultured Acidobacteria in redox oscillated Sphagnum peat. mSystems 7, e0005522 (2022).
pubmed: 36036503
doi: 10.1128/msystems.00055-22
Deng, Y. et al. Molecular ecological network analyses. BMC Bioinformatics 13, 113 (2012).
pubmed: 22646978
pmcid: 3428680
doi: 10.1186/1471-2105-13-113
Zhou, J. et al. Functional molecular ecological networks. mBio 1, e00169–10 (2010).
pubmed: 20941329
pmcid: 2953006
doi: 10.1128/mBio.00169-10
Zhou, J., Deng, Y., Luo, F., He, Z. & Yang, Y. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO
pubmed: 21791581
pmcid: 3143843
doi: 10.1128/mBio.00122-11
Tfaily, M. M. et al. Organic matter transformation in the peat column at Marcell Experimental Forest: humification and vertical stratification. J. Geophys. Res. Biogeosci. 119, 661–675 (2014).
doi: 10.1002/2013JG002492
Zhou, Z. et al. METABOLIC: high-throughput profiling of microbial genomes for functional traits, metabolism, biogeochemistry, and community-scale functional networks. Microbiome 10, 33 (2022).
pubmed: 35172890
pmcid: 8851854
doi: 10.1186/s40168-021-01213-8
Levasseur, A., Drula, E., Lombard, V., Coutinho, P. M. & Henrissat, B. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol. Biofuels 6, 41 (2013).
pubmed: 23514094
pmcid: 3620520
doi: 10.1186/1754-6834-6-41
Zhou, J. et al. Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proc. Natl Acad. Sci. USA 111, E836–E845 (2014).
pubmed: 24550501
pmcid: 3948316
doi: 10.1073/pnas.1324044111
Stegen, J. C. et al. Quantifying community assembly processes and identifying features that impose them. ISME J. 7, 2069–2079 (2013).
pubmed: 23739053
pmcid: 3806266
doi: 10.1038/ismej.2013.93
Bottrell, S. H. et al. Concentrations, sulfur isotopic compositions and origin of organosulfur compounds in pore waters of a highly polluted raised peatland. Org. Geochem. 41, 55–62 (2010).
doi: 10.1016/j.orggeochem.2009.07.005
Koch, B. P., Dittmar, T., Witt, M. & Kattner, G. Fundamentals of molecular formula assignment to ultrahigh resolution mass data of natural organic matter. Anal. Chem. 79, 1758–1763 (2007).
pubmed: 17297983
doi: 10.1021/ac061949s
Graham, E. B. & Hofmockel, K. S. Ecological stoichiometry as a foundation for omics-enabled biogeochemical models of soil organic matter decomposition. Biogeochemistry 157, 31–50 (2022).
doi: 10.1007/s10533-021-00851-2
Callaghan, T. V. et al. A new climate era in the sub‐Arctic: accelerating climate changes and multiple impacts. Geophys. Res. Lett. 37, L14705 (2010).
doi: 10.1029/2009GL042064
Bäckstrand, K., Crill, P. M., Mastepanov, M., Christensen, T. R. & Bastviken, D. Non‐methane volatile organic compound flux from a subarctic mire in northern Sweden. Tellus B 60, 226–237 (2008).
doi: 10.1111/j.1600-0889.2007.00331.x
Olefeldt D. & Roulet, N. T. Effects of permafrost and hydrology on the composition and transport of dissolved organic carbon in a subarctic peatland complex. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2011JG001819 (2012).
Åkerman, H. J. & Johansson, M. Thawing permafrost and thicker active layers in sub‐arctic Sweden. Permafr. Periglac. Process. 19, 279–292 (2008).
doi: 10.1002/ppp.626
Malmer, N., Johansson, T., Olsrud, M. & Christensen, T. R. Vegetation, climatic changes and net carbon sequestration in a North‐Scandinavian subarctic mire over 30 years. Glob. Change Biol. 11, 1895–1909 (2005).
doi: 10.1111/j.1365-2486.2005.01042.x
Hough, M. et al. Biotic and environmental drivers of plant microbiomes across a permafrost thaw gradient. Front. Microbiol. 11, 796 (2020).
pubmed: 32499761
pmcid: 7243355
doi: 10.3389/fmicb.2020.00796
Hodgkins, S. B. Changes in Organic Matter Chemistry and Methanogenesis Due to Permafrost Thaw in a Subarctic Peatland (Florida State Univ., 2016).
Morrison, N. et al. Standard reporting requirements for biological samples in metabolomics experiments: environmental context. Metabolomics 3, 203–210 (2007).
doi: 10.1007/s11306-007-0067-1
Barrow, M. P., Burkitt, W. I. & Derrick, P. J. Principles of Fourier transform ion cyclotron resonance mass spectrometry and its application in structural biology. Analyst 130, 18–28 (2005).
pubmed: 15614347
doi: 10.1039/b403880k
Stenson, A. C., Landing, W. M., Marshall, A. G. & Cooper, W. T. Ionization and fragmentation of humic substances in electrospray ionization Fourier transform–ion cyclotron resonance mass spectrometry. Anal. Chem. 74, 4397–4409 (2002).
pubmed: 12236348
doi: 10.1021/ac020019f
Tolić, N. et al. Formularity: software for automated formula assignment of natural and other organic matter from ultrahigh-resolution mass spectra. Anal. Chem. 89, 12659–12665 (2017).
pubmed: 29120613
doi: 10.1021/acs.analchem.7b03318
Tfaily, M. M., Hess, N. J., Koyama, A. & Evans, R. D. Elevated [CO
doi: 10.1016/j.geoderma.2018.05.025
Bramer, L. M. et al. ftmsRanalysis: an R package for exploratory data analysis and interactive visualization of FT-MS data. PLoS Comput. Biol. 16, e1007654 (2020).
pubmed: 32176690
pmcid: 7098629
doi: 10.1371/journal.pcbi.1007654
Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
pubmed: 10592173
pmcid: 102409
doi: 10.1093/nar/28.1.27
Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–D114 (2011).
pubmed: 22080510
pmcid: 3245020
doi: 10.1093/nar/gkr988
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404
pmcid: 4103590
doi: 10.1093/bioinformatics/btu170
Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).
pubmed: 28298430
pmcid: 5411777
doi: 10.1101/gr.213959.116
Parks, D. UniteM. GitHub https://github.com/dparks1134/UniteM (2017).
Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018).
pubmed: 29807988
pmcid: 6786971
doi: 10.1038/s41564-018-0171-1
Uritskiy, G. V., DiRuggiero, J. & Taylor, J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6, 158 (2018).
pubmed: 30219103
pmcid: 6138922
doi: 10.1186/s40168-018-0541-1
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).
pubmed: 25977477
pmcid: 4484387
doi: 10.1101/gr.186072.114
Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).
pubmed: 28894102
doi: 10.1038/s41564-017-0012-7
Eren, A. M. et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat. Microbiol. 6, 3–6 (2021).
pubmed: 33349678
pmcid: 8116326
doi: 10.1038/s41564-020-00834-3
Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).
pubmed: 25609793
doi: 10.1093/bioinformatics/btv033
Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).
pubmed: 31388474
pmcid: 6662567
doi: 10.7717/peerj.7359
Huntemann, M. et al. The standard operating procedure of the DOE-JGI Metagenome Annotation Pipeline (MAP v.4). Stand. Genom. Sci. 11, 17 (2016).
doi: 10.1186/s40793-016-0138-x
Aroney, S. T. N., Camargo, A. P., Tyson, G. W. & Woodcroft, B. J. Galah: more scalable dereplication for metagenome assembled genomes (v0.4.0). Zenodo https://doi.org/10.5281/zenodo.10526086 (2024).
Aroney, S. T. N. et al. CoverM: read coverage calculator for metagenomics (v0.7.0). Zenodo https://doi.org/10.5281/zenodo.10531254 (2024).
Shaffer, M. et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 48, 8883–8900 (2020).
pubmed: 32766782
pmcid: 7498326
doi: 10.1093/nar/gkaa621
Woodcroft, B. J. et al. SingleM and Sandpiper: robust microbial taxonomic profiles from metagenomic data. Preprint at bioRxiv https://doi.org/10.1101/2024.01.30.578060 (2024).
sternp/transcriptm: public release (v0.3.1). Zenodo https://doi.org/10.5281/zenodo.11090118 (2024).
Drula, E. et al. The carbohydrate-active enzyme database: functions and literature. Nucleic Acids Res. 50, D571–D577 (2021).
pmcid: 8728194
doi: 10.1093/nar/gkab1045
Boyd, J. A., Woodcroft, B. J. & Tyson, G. W. GraftM: a tool for scalable, phylogenetically informed classification of genes within metagenomes. Nucleic Acids Res. 46, e59 (2018).
pubmed: 29562347
pmcid: 6007438
doi: 10.1093/nar/gky174
Suzek, B. E. et al. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 31, 926–932 (2014).
pubmed: 25398609
pmcid: 4375400
doi: 10.1093/bioinformatics/btu739
Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).
pubmed: 29035372
doi: 10.1038/nbt.3988
Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004).
pubmed: 14985472
pmcid: 390282
doi: 10.1093/nar/gkh293
Ellenbogen, J. B. et al. Methylotrophy in the Mire: direct and indirect routes for methane production in thawing permafrost. mSystems 9, e00698–23 (2023).
pubmed: 38063415
pmcid: 10805028
Chaumeil, P. A. et al. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2020).
doi: 10.1093/bioinformatics/btz848
Zhu, Q. et al. Phylogenomics of 10,575 genomes reveals evolutionary proximity between domains Bacteria and Archaea. Nat. Commun. 10, 5477 (2019).
pubmed: 31792218
pmcid: 6889312
doi: 10.1038/s41467-019-13443-4
Blomberg, S. P. & Garland, T. Jr Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J. Evol. Biol. 15, 899–910 (2002).
doi: 10.1046/j.1420-9101.2002.00472.x
Simpson, G. L. Analogue methods in palaeoecology: using the analogue package. J. Stat. Softw. 22, 1–29 (2007).
doi: 10.18637/jss.v022.i02
Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).
pubmed: 20395285
doi: 10.1093/bioinformatics/btq166
Kassambara, A. rstatix: pipe-friendly framework for basic statistical tests. R package version 0.7.2 https://cran.r-project.org/web/packages/rstatix/index.html (2023).
Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).
doi: 10.1111/j.1654-1103.2003.tb02228.x
Merder, J. et al. Dissolved organic compounds with synchronous dynamics share chemical properties and origin. Limnol. Oceanogr. 66, 4001–4016 (2021).
doi: 10.1002/lno.11938
Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, 2012).
Harrell, F. Jr. Hmisc: Harrell miscellaneous. R package version 5.0.1 https://CRAN.R-project.org/package=Hmisc (2023).
Csardi, G. & Nepusz, T. The igraph software package for complex network research. Interjournal Complex Syst. 1695, 1–9 (2006).
Csárdi, G. et al. igraph: network analysis and visualization in R. R package version 1.4.1 https://CRAN.R-project.org/package=igraph (2023).
Pedersen T. ggraph: an implementation of grammar of graphics for graphs and networks. R package version 2.1.0 https://cran.r-project.org/web/packages/ggraph/index.html (2022).
Pedersen T. tidygraph: a tidy API for graph manipulation. R package version 1.3.1 https://cran.r-project.org/web/packages/tidygraph/index.html (2023).
Yuan, M. M. et al. Climate warming enhances microbial network complexity and stability. Nat. Clim. Change 11, 343–348 (2021).
doi: 10.1038/s41558-021-00989-9
Newman, M. E. Modularity and community structure in networks. Proc. Natl Acad. Sci. USA 103, 8577–8582 (2006).
pubmed: 16723398
pmcid: 1482622
doi: 10.1073/pnas.0601602103
Aramaki, T. et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2019).
pmcid: 7141845
doi: 10.1093/bioinformatics/btz859
Selengut, J. D. et al. TIGRFAMs and genome properties: tools for the assignment of molecular function and biological process in prokaryotic genomes. Nucleic Acids Res. 35, D260–D264 (2007).
pubmed: 17151080
doi: 10.1093/nar/gkl1043
Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014).
pubmed: 24288371
doi: 10.1093/nar/gkt1223
Zhang, H. et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 46, W95–W101 (2018).
pubmed: 29771380
pmcid: 6031026
doi: 10.1093/nar/gky418
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
Wickham, H. ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 3, 180–185 (2011).
doi: 10.1002/wics.147
Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. & Hornik, K. Cluster: cluster analysis basics and extensions. R package version 2.1.3 https://CRAN.R-project.org/package=cluster (2022).
Pedersen, T. patchwork: the composer of plots. R package verson 1.1.2 https://github.com/thomasp85/patchwork , https://patchwork.data-imaginist.com (2022).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).
Freire-Zapata, V. & Aroney, S. tfaily-lab/Metabolome_permafrost: metabolome paper Nature Microbiology. Zenodo https://doi.org/10.5281/zenodo.12588199 (2024).