Evolutionarily conserved fMRI network dynamics in the mouse, macaque, and human brain.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
02 Oct 2024
Historique:
received: 19 01 2024
accepted: 13 09 2024
medline: 2 10 2024
pubmed: 2 10 2024
entrez: 1 10 2024
Statut: epublish

Résumé

Evolutionarily relevant networks have been previously described in several mammalian species using time-averaged analyses of fMRI time-series. However, fMRI network activity is highly dynamic and continually evolves over timescales of seconds. Whether the dynamic organization of resting-state fMRI network activity is conserved across mammalian species remains unclear. Using frame-wise clustering of fMRI time-series, we find that intrinsic fMRI network dynamics in awake male macaques and humans is characterized by recurrent transitions between a set of 4 dominant, neuroanatomically homologous fMRI coactivation modes (C-modes), three of which are also plausibly represented in the male rodent brain. Importantly, in all species C-modes exhibit species-invariant dynamic features, including preferred occurrence at specific phases of fMRI global signal fluctuations, and a state transition structure compatible with infraslow coupled oscillator dynamics. Moreover, dominant C-mode occurrence reconstitutes the static organization of the fMRI connectome in all species, and is predictive of ranking of corresponding fMRI connectivity gradients. These results reveal a set of species-invariant principles underlying the dynamic organization of fMRI networks in mammalian species, and offer novel opportunities to relate fMRI network findings across the phylogenetic tree.

Identifiants

pubmed: 39353895
doi: 10.1038/s41467-024-52721-8
pii: 10.1038/s41467-024-52721-8
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

8518

Informations de copyright

© 2024. The Author(s).

Références

Smith, S. M. et al. Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl Acad. Sci. USA 106, 13040–13045 (2009).
pubmed: 19620724 pmcid: 2722273 doi: 10.1073/pnas.0905267106
Power, J. D. et al. Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84, 320–341 (2014).
pubmed: 23994314 doi: 10.1016/j.neuroimage.2013.08.048
Craddock, R. C. et al. Imaging human connectomes at the macroscale. Nat. Methods 10, 524–539 (2013).
pubmed: 23722212 pmcid: 4096321 doi: 10.1038/nmeth.2482
Preti, M. G., Bolton, T. A. & Van De Ville, D. The dynamic functional connectome: State-of-the-art and perspectives. Neuroimage 160, 41–54 (2017).
pubmed: 28034766 doi: 10.1016/j.neuroimage.2016.12.061
Lurie, D. J. et al. Questions and controversies in the study of time-varying functional connectivity in resting fMRI. Netw. Neurosci. 4, 30–69 (2020).
pubmed: 32043043 pmcid: 7006871 doi: 10.1162/netn_a_00116
Gozzi, A. & Zerbi, V. Modeling brain dysconnectivity in rodents. Biol. Psychiatry 93, 419–429 (2023).
pubmed: 36517282 doi: 10.1016/j.biopsych.2022.09.008
Pagani, M., Gutierrez‐Barragan, D., de Guzman, A. E., Xu, T. & Gozzi, A. Mapping and comparing fMRI connectivity networks across species. Commun. Biol. 6, 1–15 (2023).
doi: 10.1038/s42003-023-05629-w
Milham, M. et al. Accelerating the evolution of nonhuman primate neuroimaging. Neuron 105, 600–603 (2020).
doi: 10.1016/j.neuron.2019.12.023
Grandjean, J. et al. A consensus protocol for functional connectivity analysis in the rat brain. Nat. Neurosci. 26, 673–681 (2023).
Gozzi, A. & Schwarz, A. J. Large-scale functional connectivity networks in the rodent brain. Neuroimage 127, 496–509 (2016).
pubmed: 26706448 doi: 10.1016/j.neuroimage.2015.12.017
Tsai, P. J. et al. Converging structural and functional evidence for a rat salience network. Biol. Psychiatry 88, 867–878 (2020).
pubmed: 32981657 doi: 10.1016/j.biopsych.2020.06.023
Whitesell, J. D. et al. Regional, layer, and cell-type-specific connectivity of the mouse default mode network. Neuron 109, 545–559.e8 (2021).
pubmed: 33290731 pmcid: 8150331 doi: 10.1016/j.neuron.2020.11.011
Pezzulo, G., Zorzi, M. & Corbetta, M. The secret life of predictive brains: what’s spontaneous activity for? Trends Cogn. Sci. 25, 730–743 (2021).
pubmed: 34144895 pmcid: 8363551 doi: 10.1016/j.tics.2021.05.007
Palva, J. M. & Palva, S. Infra-slow fluctuations in electrophysiological recordings, blood-oxygenation-level-dependent signals, and psychophysical time series. Neuroimage 62, 2201–2211 (2012).
pubmed: 22401756 doi: 10.1016/j.neuroimage.2012.02.060
Karahanoğlu, F. I. & Van De Ville, D. Transient brain activity disentangles fMRI resting-state dynamics in terms of spatially and temporally overlapping networks. Nat. Commun. 6, 7751 (2015).
pubmed: 26178017 doi: 10.1038/ncomms8751
Gutierrez-Barragan, D., Basson, M. A. A., Panzeri, S. & Gozzi, A. Infraslow state fluctuations govern spontaneous fMRI network dynamics. Curr. Biol. 29, 2295–2306.e5 (2019).
pubmed: 31303490 pmcid: 6657681 doi: 10.1016/j.cub.2019.06.017
Liu, X., Chang, C. & Duyn, J. H. Decomposition of spontaneous brain activity into distinct fMRI co-activation patterns. Front. Syst. Neurosci. 7, 1–11 (2013).
doi: 10.3389/fnsys.2013.00101
Cornblath, E. J. et al. Temporal sequences of brain activity at rest are constrained by white matter structure and modulated by cognitive demands. Commun. Biol. 3, 261 (2020).
pubmed: 32444827 pmcid: 7244753 doi: 10.1038/s42003-020-0961-x
Huang, Z., Zhang, J., Wu, J., Mashour, G. A. & Hudetz, A. G. Temporal circuit of macroscale dynamic brain activity supports human consciousness. Sci. Adv. 6, 1–15 (2020).
doi: 10.1126/sciadv.aaz0087
Xu, T. et al. Cross-species functional alignment reveals evolutionary hierarchy within the connectome. Neuroimage 223, 117346 (2020).
pubmed: 32916286 doi: 10.1016/j.neuroimage.2020.117346
Deco, G., Jirs, V., McIntosh, A. R., Sporns, O. & Kötter, R. Key role of coupling, delay, and noise in resting brain fluctuations. Proc. Natl Acad. Sci. USA 106, 10302–10307 (2009).
pubmed: 19497858 pmcid: 2690605 doi: 10.1073/pnas.0901831106
Zuo, X. N. et al. An open science resource for establishing reliability and reproducibility in functional connectomics. Sci. Data 1, 1–13 (2014).
doi: 10.1038/sdata.2014.49
Gordon, E. M. et al. Precision functional mapping of individual human brains. Neuron 95, 791–807.e7 (2017).
pubmed: 28757305 pmcid: 5576360 doi: 10.1016/j.neuron.2017.07.011
Slater, H. et al. Individually customisable non-invasive head immobilisation system for non-human primates with an option for voluntary engagement. J. Neurosci. Methods 269, 46–60 (2016).
pubmed: 27189889 pmcid: 4935671 doi: 10.1016/j.jneumeth.2016.05.009
Milham, M. P. et al. An open resource for non-human primate imaging. Neuron 100, 61–74.e2 (2018).
pubmed: 30269990 pmcid: 6231397 doi: 10.1016/j.neuron.2018.08.039
Bolt, T. et al. A parsimonious description of global functional brain organization in three spatiotemporal patterns. Nat. Neurosci. 25, 1093–1103 (2022).
pubmed: 35902649 doi: 10.1038/s41593-022-01118-1
Thomas Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).
pmcid: 3174820 doi: 10.1152/jn.00338.2011
Xu, T. et al. Interindividual variability of functional connectivity in awake and anesthetized rhesus macaque monkeys. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 4, 543–553 (2019).
pubmed: 31072758 pmcid: 7063583
Gutierrez-Barragan, D. et al. Unique spatiotemporal fMRI dynamics in the awake mouse brain. Curr. Biol. 32, 631–644.e6 (2022).
pubmed: 34998465 pmcid: 8837277 doi: 10.1016/j.cub.2021.12.015
Mars, R. B. et al. Whole brain comparative anatomy using connectivity blueprints. Elife 7, 1–15 (2018).
doi: 10.7554/eLife.35237
Kuhn, H. W. The Hungarian method for the assignment problem. Nav. Res. Logist. 52, 7–21 (2005).
doi: 10.1002/nav.20053
Ekroot, L. & Cover, T. M. The entropy of Markov trajectories. IEEE Trans. Inf. Theory 39, 1418–1421 (1993).
doi: 10.1109/18.243461
Esfahlani, F. Z. et al. High-amplitude cofluctuations in cortical activity drive functional connectivity. Proc. Natl Acad. Sci. USA 117, 28393–28401 (2020).
doi: 10.1073/pnas.2005531117
Ragone, E. et al. Modular subgraphs in large-scale connectomes underpin spontaneous co-fluctuation events in mouse and human brains. Commun. Biol. 7, 126 (2024).
Margulies, D. S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl Acad. Sci. USA 113, 12574–12579 (2016).
pubmed: 27791099 pmcid: 5098630 doi: 10.1073/pnas.1608282113
Hong, S. J. et al. Toward a connectivity gradient-based framework for reproducible biomarker discovery. Neuroimage 223, 117322 (2020).
pubmed: 32882388 doi: 10.1016/j.neuroimage.2020.117322
Huntenburg, J. M., Bazin, P. L. & Margulies, D. S. Large-scale gradients in human cortical organization. Trends Cogn. Sci. 22, 21–31 (2018).
pubmed: 29203085 doi: 10.1016/j.tics.2017.11.002
Lu, H. et al. Rat brains also have a default mode network. Proc. Natl Acad. Sci. USA 109, 3979–3984 (2012).
pubmed: 22355129 pmcid: 3309754 doi: 10.1073/pnas.1200506109
Mandino, F. et al. A triple-network organization for the mouse brain. Mol. Psychiatry 27, 865–872 (2022).
pubmed: 34650202 doi: 10.1038/s41380-021-01298-5
Pagani, M., Gutierrez-Barragan, D., De Guzman, E. & Gozzi, A. In Advances in Resting-State Functional MRI (Elsevier, 2023).
Abbas, A. et al. Quasi-periodic patterns contribute to functional connectivity in the brain. Neuroimage 191, 193–204 (2019).
pubmed: 30753928 doi: 10.1016/j.neuroimage.2019.01.076
Faskowitz, J., Esfahlani, F. Z., Jo, Y., Sporns, O. & Betzel, R. F. Edge-centric functional network representations of human cerebral cortex reveal overlapping system-level architecture. Nat. Neurosci. 23, 1644–1654 (2020).
pubmed: 33077948 doi: 10.1038/s41593-020-00719-y
Belloy, M. E. et al. Resting brain fluctuations are intrinsically coupled to visual response Dynamics. Cereb. Cortex 31, 1511–1522 (2021).
pubmed: 33108464 doi: 10.1093/cercor/bhaa305
Grandjean, J. et al. Dynamic reorganization of intrinsic functional networks in the mouse brain. Neuroimage 152, 497–508 (2017).
pubmed: 28315459 doi: 10.1016/j.neuroimage.2017.03.026
Ma, Y., Hamilton, C. & Zhang, N. Dynamic connectivity patterns in conscious and unconscious Brain. Brain Connect 7, 1–12 (2017).
pubmed: 27846731 pmcid: 5312592 doi: 10.1089/brain.2016.0464
Barttfeld, P. et al. Signature of consciousness in the dynamics of resting-state brain activity. Proc. Natl Acad. Sci. USA 112, 887–892 (2015).
pubmed: 25561541 pmcid: 4311826 doi: 10.1073/pnas.1418031112
Allen, E. A. et al. Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 24, 663–676 (2014).
pubmed: 23146964 doi: 10.1093/cercor/bhs352
Cabral, J. et al. Cognitive performance in healthy older adults relates to spontaneous switching between states of functional connectivity during rest. Sci. Rep. 7, 1–13 (2017).
doi: 10.1038/s41598-017-05425-7
Demertzi, A. et al. Human consciousness is supported by dynamic complex patterns of brain signal coordination. Sci. Adv. 5, eaat7603 (2019).
pubmed: 30775433 pmcid: 6365115 doi: 10.1126/sciadv.aat7603
Huang, Z., Zhang, J., Wu, J., Mashour, G. A. & Hudetz, A. G. Temporal circuit of macroscale dynamic brain activity supports human consciousness. Sci. Adv. 6, 1–10 (2020).
doi: 10.1126/sciadv.aaz0087
Sporns, O., Faskowitz, J., Teixeira, A. S., Cutts, S. A. & Betzel, R. F. Dynamic expression of brain functional systems disclosed by fine-scale analysis of edge time series. Netw. Neurosci. 5, 405–433 (2021).
pubmed: 34189371 pmcid: 8233118 doi: 10.1162/netn_a_00182
Buckner, R. L. & DiNicola, L. M. The brain’s default network: updated anatomy, physiology and evolving insights. Nat. Rev. Neurosci. 20, 593–608 (2019).
pubmed: 31492945 doi: 10.1038/s41583-019-0212-7
Griffa, A. et al. Evidence for increased parallel information transmission in human brain networks compared to macaques and male mice. Nat. Commun. 14, 8216 (2023).
pubmed: 38081838 pmcid: 10713651 doi: 10.1038/s41467-023-43971-z
Zhang, K. & Sejnowski, T. J. A universal scaling law between gray matter and white matter of cerebral cortex. Proc. Natl Acad. Sci. USA 97, 5621–5626 (2000).
pubmed: 10792049 pmcid: 25878 doi: 10.1073/pnas.090504197
Ardesch, D. J. et al. Scaling principles of white matter connectivity in the human and nonhuman primate brain. Cereb. Cortex 32, 2831–2842 (2022).
pubmed: 34849623 doi: 10.1093/cercor/bhab384
Lindstedt, S. L. & Schaeffer, P. J. Use of allometry in predicting anatomical and physiological parameters of mammals. Lab. Anim. 36, 1–19 (2002).
pubmed: 11833526 doi: 10.1258/0023677021911731
Buckner, R. L. & Krienen, F. M. The evolution of distributed association networks in the human brain. Trends Cogn. Sci. 17, 648–665 (2013).
pubmed: 24210963 doi: 10.1016/j.tics.2013.09.017
Garin, C. M. et al. An evolutionary gap in primate default mode network organization. Cell Rep. 39, 110669 (2022).
pubmed: 35417698 pmcid: 9088817 doi: 10.1016/j.celrep.2022.110669
Ville, D. VanDe Brain dynamics: global pulse and brain state switching. Curr. Biol. 29, R690–R692 (2019).
pubmed: 31336086 doi: 10.1016/j.cub.2019.06.006
Liu, X. et al. Subcortical evidence for a contribution of arousal to fMRI studies of brain activity. Nat. Commun. 9, 1–10 (2018).
Raut, R. V. et al. Global waves synchronize the brain’s functional systems with fluctuating arousal. Sci. Adv. 7, 1–16 (2021).
doi: 10.1126/sciadv.abf2709
Shine, J. M. et al. The dynamics of functional brain networks: integrated network states during cognitive task performance. Neuron 92, 544–554 (2016).
pubmed: 27693256 pmcid: 5073034 doi: 10.1016/j.neuron.2016.09.018
Ponce-Alvarez, A. et al. Resting-state temporal synchronization networks emerge from connectivity topology and heterogeneity. PLoS Comput. Biol. 11, 1–23 (2015).
doi: 10.1371/journal.pcbi.1004100
Pang, J. C. et al. Geometric constraints on human brain function. Nature 618, 566–574 (2023).
pubmed: 37258669 pmcid: 10266981 doi: 10.1038/s41586-023-06098-1
Cabral, J., Fernandes, F. F. & Shemesh, N. Intrinsic macroscale oscillatory modes driving long range functional connectivity in female rat brains detected by ultrafast fMRI. Nat. Commun. 14, 375 (2023).
pubmed: 36746938 pmcid: 9902553 doi: 10.1038/s41467-023-36025-x
Deco, G., Tononi, G., Boly, M. & Kringelbach, M. L. Rethinking segregation and integration: contributions of whole-brain modelling. Nat. Rev. Neurosci. 16, 430–439 (2015).
pubmed: 26081790 doi: 10.1038/nrn3963
Katsumi, Y. et al. Correspondence of functional connectivity gradients across human isocortex, cerebellum, and hippocampus. Commun. Biol. 6, 401 (2023).
pubmed: 37046050 pmcid: 10097701 doi: 10.1038/s42003-023-04796-0
Bethlehem, R. A. I. et al. Dispersion of functional gradients across the adult lifespan. Neuroimage 222, 117299 (2020).
pubmed: 32828920 doi: 10.1016/j.neuroimage.2020.117299
Coletta, L. et al. Network structure of the mouse brain connectome with voxel resolution. Sci. Adv. 6, 1–43 (2020).
doi: 10.1126/sciadv.abb7187
Fultz, N. E. et al. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science 366, 628–631 (2019).
pubmed: 31672896 pmcid: 7309589 doi: 10.1126/science.aax5440
Chen, J. E. et al. Resting-state “physiological networks. Neuroimage 213, 116707 (2020).
pubmed: 32145437 doi: 10.1016/j.neuroimage.2020.116707
Mateo, C., Knutsen, P. M., Tsai, P. S., Shih, A. Y. & Kleinfeld, D. Entrainment of arteriole vasomotor fluctuations by neural activity is a basis of blood-oxygenation-level-dependent “resting-State” bonnectivity. Neuron 96, 936–948.e3 (2017).
pubmed: 29107517 pmcid: 5851777 doi: 10.1016/j.neuron.2017.10.012
Cerri, D. H. et al. Distinct neurochemical influences on fMRI response polarity in the striatum. Nat. Commun. 15, 1916 (2024).
Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013).
pubmed: 23668970 doi: 10.1016/j.neuroimage.2013.04.127
Cox, R. W. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 29, 162–173 (1996).
pubmed: 8812068 doi: 10.1006/cbmr.1996.0014
Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith, S. M. FSL - Review. Neuroimage 62, 782–790 (2012).
pubmed: 21979382 doi: 10.1016/j.neuroimage.2011.09.015
Fischl, B. FreeSurfer. Neuroimage 62, 774–781 (2012).
pubmed: 22248573 doi: 10.1016/j.neuroimage.2012.01.021
Smith, S. M. Fast robust automated brain extraction. Hum. Brain Mapp. 17, 143–155 (2002).
pubmed: 12391568 pmcid: 6871816 doi: 10.1002/hbm.10062
Donahue, C. J. et al. Using diffusion tractography to predict cortical connection strength and distance: a quantitative comparison with tracers in the monkey. J. Neurosci. 36, 6758–6770 (2016).
pubmed: 27335406 pmcid: 4916250 doi: 10.1523/JNEUROSCI.0493-16.2016
Tustison, N. J. et al. Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements. Neuroimage 99, 166–179 (2014).
pubmed: 24879923 doi: 10.1016/j.neuroimage.2014.05.044
Craddock, R. C., James, G. A., Holtzheimer, P. E., Hu, X. P. & Mayberg, H. S. A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33, 1914–1928 (2012).
pubmed: 21769991 doi: 10.1002/hbm.21333
Arthur, D. & Vassilvitskii, S. K-Means++: the advantages of careful seeding. In Proc. eighteenth Annu. ACM-SIAM Symp. Discret. algorithms 1027–1025 (2007).
Goutte, C., Toft, P., Rostrup, E., Nielsen, F. Å. & Hansen, L. K. On clustering fMRI time series. Neuroimage 9, 298–310 (1999).
pubmed: 10075900 doi: 10.1006/nimg.1998.0391
Hartig, R. et al. The subcortical atlas of the rhesus macaque (SARM) for neuroimaging. Neuroimage 235, 117996 (2021).
Berens, P. CircStat: a MATLAB toolbox for circular statistics. J. Stat. Softw. 31, 293–295 (2009).
doi: 10.18637/jss.v031.i10
Cornblath, E. J. et al. Temporal sequences of brain activity at rest are constrained by white matter structure and modulated by cognitive demands. Commun. Biol. 3, 1–12 (2020).
doi: 10.1038/s42003-020-0961-x
Cho, J. W., Korchmaros, A., Vogelstein, J. T., Milham, M. P. & Xu, T. Impact of concatenating fMRI data on reliability for functional connectomics. Neuroimage 226, 117549 (2021).
pubmed: 33248255 doi: 10.1016/j.neuroimage.2020.117549
Vos de Wael, R. et al. BrainSpace: a toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets. Commun. Biol. 3, 103 (2020).
Ren, J. et al. Individual variability in functional organization of the human and monkey auditory cortex. Cereb. Cortex 31, 2450–2465 (2021).
pubmed: 33350445 doi: 10.1093/cercor/bhaa366

Auteurs

Daniel Gutierrez-Barragan (D)

Functional Neuroimaging Lab, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto, Italy.

Julian S B Ramirez (JSB)

Center for the Developing Brain. Child Mind Institute, New York, NY, USA.

Stefano Panzeri (S)

Institute for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.

Ting Xu (T)

Center for the Developing Brain. Child Mind Institute, New York, NY, USA.

Alessandro Gozzi (A)

Functional Neuroimaging Lab, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto, Italy. alessandro.gozzi@iit.it.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C

Classifications MeSH