Metaverse in surgery - origins and future potential.
Journal
Nature reviews. Urology
ISSN: 1759-4820
Titre abrégé: Nat Rev Urol
Pays: England
ID NLM: 101500082
Informations de publication
Date de publication:
30 Sep 2024
30 Sep 2024
Historique:
accepted:
03
09
2024
medline:
1
10
2024
pubmed:
1
10
2024
entrez:
30
9
2024
Statut:
aheadofprint
Résumé
The metaverse refers to a collective virtual space that combines physical and digital realities to create immersive, interactive environments. This space is powered by technologies such as augmented reality (AR), virtual reality (VR), artificial intelligence (AI) and blockchain. In healthcare, the metaverse can offer many applications. Specifically in surgery, potential uses of the metaverse include the possibility of conducting immersive surgical training in a VR or AR setting, and enhancing surgical planning through the adoption of three-dimensional virtual models and simulated procedures. At the intraoperative level, AR-guided surgery can assist the surgeon in real time to increase surgical precision in tumour identification and selective management of vessels. In post-operative care, potential uses of the metaverse include recovery monitoring and patient education. In urology, AR and VR have been widely explored in the past decade, mainly for surgical navigation in prostate and kidney cancer surgery, whereas only anecdotal metaverse experiences have been reported to date, specifically in partial nephrectomy. In the future, further integration of AI will improve the metaverse experience, potentially increasing the possibility of carrying out surgical navigation, data collection and virtual trials within the metaverse. However, challenges concerning data security and regulatory compliance must be addressed before the metaverse can be used to improve patient care.
Identifiants
pubmed: 39349948
doi: 10.1038/s41585-024-00941-4
pii: 10.1038/s41585-024-00941-4
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. Springer Nature Limited.
Références
Zhang, X., Chen, Y., Hu, L. & Wang, Y. The metaverse in education: definition, framework, features, potential applications, challenges, and future research topics. Front. Psychol. 13, 1016300 (2022).
pubmed: 36304866
pmcid: 9595278
doi: 10.3389/fpsyg.2022.1016300
Weinberger, M. What is metaverse?—a definition based on qualitative meta-synthesis. Future Internet 14, 310 (2022).
doi: 10.3390/fi14110310
Mystakidis, S. Metaverse. Encyclopedia 2, 486–497 (2022).
doi: 10.3390/encyclopedia2010031
Veneziano, D. et al. Climbing over the barriers of current imaging technology in urology. Eur. Urol. 77, 142–143 (2020).
pubmed: 31610902
doi: 10.1016/j.eururo.2019.09.016
Stephenson, N. Snow Crash (Bantam Books, 1992).
Bernardo, A. Virtual reality and simulation in neurosurgical training. World Neurosurg. 106, 1015–1029 (2017).
pubmed: 28985656
doi: 10.1016/j.wneu.2017.06.140
Checcucci, E. et al. The metaverse in urology: ready for prime time. The ESUT, ERUS, EULIS, and ESU perspective. Eur. Urol. Open. Sci. 46, 96–98 (2022).
pubmed: 36388430
pmcid: 9647430
doi: 10.1016/j.euros.2022.10.011
Checcucci, E. et al. The future of robotic surgery in urology: from augmented reality to the advent of metaverse. Ther. Adv. Urol. 15, 17562872231151853 (2023).
pubmed: 36744045
pmcid: 9893340
doi: 10.1177/17562872231151853
Alharbi, Y., Al-Mansour, M., Al-Saffar, R., Garman, A. & Al-Radadi, A. Three-dimensional virtual reality as an innovative teaching and learning tool for human anatomy courses in medical education: a mixed methods study. Cureus https://doi.org/10.7759/cureus.7085 (2020).
doi: 10.7759/cureus.7085
pubmed: 33489609
pmcid: 7816827
Kye, B., Han, N., Kim, E., Park, Y. & Jo, S. Educational applications of metaverse: possibilities and limitations. J. Educ. Eval. Health Prof. 18, 32 (2021).
pubmed: 34897242
pmcid: 8737403
doi: 10.3352/jeehp.2021.18.32
Sutherland, I. E. A head-mounted three dimensional display. In Proc. AFIPS ‘68 757–764 (Association for Computing Machinery, 1968).
Lanier, J. Virtually there. Sci. Am. 284, 66–75 (2001).
pubmed: 11285824
doi: 10.1038/scientificamerican0401-66
Satava, R. M. Virtual reality surgical simulator: the first steps. Surg. Endosc. 7, 203–205 (1993).
pubmed: 8503081
doi: 10.1007/BF00594110
Satava, R. M. Historical review of surgical simulation—a personal perspective. World J. Surg. 32, 141–148 (2008).
pubmed: 18097716
doi: 10.1007/s00268-007-9374-y
Georgiou, K. E., Georgiou, E. & Satava, R. M. 5G use in healthcare: the future is present. J. Soc. Laparoscop. Soc. 25, e2021.00064 (2021).
Amparore, D. et al. Computer vision and machine-learning techniques for automatic 3D virtual images overlapping during augmented reality guided robotic partial nephrectomy. Technol. Cancer Res. Treat. 23, 15330338241229368 (2024).
pubmed: 38374643
pmcid: 10878218
doi: 10.1177/15330338241229368
Sica, M. et al. 3D model artificial intelligence-guided automatic augmented reality images during robotic partial nephrectomy. Diagnostics 13, 3454 (2023).
pubmed: 37998590
pmcid: 10670293
doi: 10.3390/diagnostics13223454
Cheng, R., Wu, N., Chen, S. & Han, B. Will metaverse be nextG internet? Vision, hype, and reality. IEEE Netw. 36, 197–204 (2022).
doi: 10.1109/MNET.117.2200055
Jamshidi, M. B. et al. A super-efficient GSM triplexer for 5G-enabled IoT in sustainable smart grid edge computing and the metaverse. Sensors 23, 3775 (2023).
pubmed: 37050835
doi: 10.3390/s23073775
Chen, L. et al. VAST: vivify your talking avatar via zero-shot expressive facial style transfer. Preprint at https://doi.org/10.48550/arXiv.2308.04830 (2023).
Shen, K. et al. X-avatar: expressive human avatars. In 2023 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR) 16911–16921 (IEEE, 2023).
Checcucci, E. et al. Metaverse surgical planning with three-dimensional virtual models for minimally invasive partial nephrectomy. Eur. Urol. 85, 320–325 (2023).
pubmed: 37673751
doi: 10.1016/j.eururo.2023.07.015
Di Dio, M. et al. Artificial intelligence-based hyper accuracy three-dimensional (HA3D®) models in surgical planning of challenging robotic nephron-sparing surgery: a case report and snapshot of the state-of-the-art with possible future implications. Diagnostics 13, 2320 (2023).
pubmed: 37510065
pmcid: 10377834
doi: 10.3390/diagnostics13142320
Wasserthal, J. et al. TotalSegmentator: robust segmentation of 104 anatomic structures in CT images. Radiol. Artif. Intell. 5, e230024 (2023).
pubmed: 37795137
pmcid: 10546353
doi: 10.1148/ryai.230024
Peroni, L. & Gorinsky, S. An end-to-end pipeline perspective on video streaming in best-effort networks: a survey and tutorial. Preprint at https://doi.org/10.48550/arXiv.2403.05192 (2024).
Truong, V. T. & Le, L. B. MetaCIDS: privacy-preserving collaborative intrusion detection for metaverse based on blockchain and online federated learning. IEEE Open. J. Comput. Soc. 4, 253–266 (2023).
doi: 10.1109/OJCS.2023.3312299
Nkoro, E. C., Nwakanma, C. I., Lee, J.-M. & Kim, D.-S. Detecting cyberthreats in metaverse learning platforms using an explainable DNN. Internet Things 25, 101046 (2024).
doi: 10.1016/j.iot.2023.101046
Checcucci, E. et al. Visual extended reality tools in image-guided surgery in urology: a systematic review. Eur. J. Nucl. Med. Mol. Imaging 51, 1–26 (2024).
doi: 10.1007/s00259-024-06699-6
Shirk, J. D. et al. Effect of 3-dimensional virtual reality models for surgical planning of robotic-assisted partial nephrectomy on surgical outcomes. JAMA Netw. Open. 2, e1911598 (2019).
pubmed: 31532520
pmcid: 6751754
doi: 10.1001/jamanetworkopen.2019.11598
Bianchi, L. et al. 3D renal model for surgical planning of partial nephrectomy: a way to improve surgical outcomes. Front. Oncol. 12, 1046505 (2022).
pubmed: 36338693
pmcid: 9634646
doi: 10.3389/fonc.2022.1046505
Shiozaki, K. et al. Clinical application of virtual imaging guided robot-assisted partial nephrectomy. J. Med. Invest. 69, 237–243 (2022).
pubmed: 36244775
doi: 10.2152/jmi.69.237
Porpiglia, F. et al. Three-dimensional augmented reality robot-assisted partial nephrectomy in case of complex tumours (PADUA ≥10): a new intraoperative tool overcoming the ultrasound guidance. Eur. Urol. 78, 229–238 (2020).
pubmed: 31898992
doi: 10.1016/j.eururo.2019.11.024
Hofman, J. et al. First-in-human real-time AI-assisted instrument deocclusion during augmented reality robotic surgery. Healthc. Technol. Lett. 11, 33–39 (2024).
pubmed: 38638494
doi: 10.1049/htl2.12056
Checcucci, E. et al. Percutaneous puncture during PCNL: new perspective for the future with virtual imaging guidance. World J. Urol. 40, 639–650 (2022).
pubmed: 34468886
doi: 10.1007/s00345-021-03820-4
Porpiglia, F. et al. Percutaneous kidney puncture with three-dimensional mixed-reality hologram guidance: from preoperative planning to intraoperative navigation. Eur. Urol. 81, 588–597 (2022).
pubmed: 34799199
doi: 10.1016/j.eururo.2021.10.023
Porpiglia, F. et al. Three-dimensional elastic augmented-reality robot-assisted radical prostatectomy using hyperaccuracy three-dimensional reconstruction technology: a step further in the identification of capsular involvement. Eur. Urol. 76, 505–514 (2019).
pubmed: 30979636
doi: 10.1016/j.eururo.2019.03.037
Autorino, R. et al. Precision surgery and genitourinary cancers. Eur. J. Surg. Oncol. 43, 893–908 (2017).
pubmed: 28254473
doi: 10.1016/j.ejso.2017.02.005
Amparore, D. et al. Three-dimensional imaging reconstruction of the kidney’s anatomy for a tailored minimally invasive partial nephrectomy: a pilot study. Asian J. Urol. 9, 263–271 (2022).
pubmed: 36035345
pmcid: 9399544
doi: 10.1016/j.ajur.2022.06.003
Amparore, D. et al. 3D imaging technologies in minimally invasive kidney and prostate cancer surgery: which is the urologists’ perception? Minerva Urol. Nephrol. 74, 178–185 (2022).
pubmed: 33769019
doi: 10.23736/S2724-6051.21.04131-X
Lin, C. et al. When to introduce three-dimensional visualization technology into surgical residency: a randomized controlled trial. J. Med. Syst. 43, 71 (2019).
pubmed: 30739210
pmcid: 6373307
doi: 10.1007/s10916-019-1157-0
Khan, J. Holographic 3D visualisation of medical scan images. In Lasers in Oral and Maxillofacial Surgery (eds Stübinger, S., Klämpfl, F., Schmidt, M. & Zeilhofer, H.-F.) 209–226 (Springer, 2020).
Moztarzadeh, O. et al. Metaverse and healthcare: machine learning-enabled digital twins of cancer. Bioengineering 10, 455 (2023).
pubmed: 37106642
pmcid: 10136137
doi: 10.3390/bioengineering10040455
Barresi, G., Gaggioli, A., Sternini, F., Ravizza, A., Pacchierotti, C. & De Michieli, L. Digital twins and healthcare: quick overview and human-centric perspectives. In mHealth and Human-Centered Design Towards Enhanced Health, Care, and Well-being Studies in Big Data Vol. 120 (eds Scataglini, S., Imbesi, S. & Marques, G.) (Springer, 2023).
Hulsen, T. Applications of the metaverse in medicine and healthcare. Adv. Lab. Med. https://doi.org/10.1515/almed-2023-0124 (2023).
doi: 10.1515/almed-2023-0124
pubmed: 38939198
pmcid: 11206184
Randazzo, G. et al. Urology: a trip into metaverse. World J. Urol. 41, 2647–2657 (2023).
pubmed: 37552265
pmcid: 10582132
doi: 10.1007/s00345-023-04560-3
Wang, Y., Li, C., Qu, L., Cai, H. & Ge, Y. Application and challenges of a metaverse in medicine. Front. Robot. AI 10, 1291199 (2023).
pubmed: 38152305
pmcid: 10752600
doi: 10.3389/frobt.2023.1291199
Checcucci, E. et al. Implementing telemedicine for the management of benign urologic conditions: a single centre experience in Italy. World J. Urol. 39, 3109–3115 (2021).
pubmed: 33385246
pmcid: 7775638
doi: 10.1007/s00345-020-03536-x
Novara, G. et al. Telehealth in urology: a systematic review of the literature. how much can telemedicine be useful during and after the COVID-19 pandemic? Eur. Urol. 78, 786–811 (2020).
pubmed: 32616405
pmcid: 7301090
doi: 10.1016/j.eururo.2020.06.025
Armfield, N. R., Gray, L. C. & Smith, A. C. Clinical use of Skype: a review of the evidence base. J. Telemed. Telecare 18, 125–127 (2012).
pubmed: 22362829
doi: 10.1258/jtt.2012.SFT101
Greenhalgh, T. et al. Virtual online consultations: advantages and limitations (VOCAL) study. BMJ Open 6, e009388 (2016).
pubmed: 26826147
pmcid: 4735312
doi: 10.1136/bmjopen-2015-009388
Rahamim-Cohen, D., Kertes, J., Feldblum, I., Shamir-Stein, N. & Shapiro Ben David, S. Use of a virtual multi-disciplinary clinic for the treatment of post-COVID-19 patients. Healthcare 12, 376 (2024).
pubmed: 38338261
pmcid: 10855243
doi: 10.3390/healthcare12030376
Jabbal, A., Carter, T., Brenkel, I. J. & Walmsley, P. The virtual knee clinic—a tool to streamline new outpatient referrals. Surgeon 21, e367–e371 (2023).
pubmed: 37640609
doi: 10.1016/j.surge.2023.07.005
Urbonas, T. et al. The safety of telemedicine clinics as an alternative to in-person preoperative assessment for elective laparoscopic cholecystectomy in patients with benign gallbladder disease: a retrospective cohort study. Patient Saf. Surg. 17, 23 (2023).
pubmed: 37644474
pmcid: 10466851
doi: 10.1186/s13037-023-00368-7
Puliatti, S. et al. COVID-19 and urology: a comprehensive review of the literature. BJU Int. 125, E7–E14 (2020).
pubmed: 32249538
doi: 10.1111/bju.15071
Demeke, H. B. et al. Telehealth practice among health centers during the COVID-19 pandemic—United States, July 11–17, 2020. MMWR Morbid. Mortal. Wkly Rep. 69, 1902–1905 (2020).
doi: 10.15585/mmwr.mm6950a4
Kim, E. J. & Kim, J. Y. The metaverse for healthcare: trends, applications, and future directions of digital therapeutics for urology. Int. Neurourol. J. 27, S3–S12 (2023).
pubmed: 37280754
pmcid: 10263160
doi: 10.5213/inj.2346108.054
Skalidis, I., Muller, O. & Fournier, S. CardioVerse: the cardiovascular medicine in the era of metaverse. Trends Cardiovasc. Med. 33, 471–476 (2023).
pubmed: 35568263
doi: 10.1016/j.tcm.2022.05.004
Kundu, M. et al. NeuroVerse: neurosurgery in the era of metaverse and other technological breakthroughs. Postgrad. Med. J. 99, 240–243 (2023).
pubmed: 36892407
doi: 10.1093/postmj/qgad002
Chapman, J. R., Wang, J. C. & Wiechert, K. Into the spine metaverse: reflections on a future metaspine (uni)verse. Glob. Spine J. 12, 545–547 (2022).
doi: 10.1177/21925682221085643
Matwala, K., Shakir, T., Bhan, C. & Chand, M. The surgical metaverse. Cirug. Españ. https://doi.org/10.1016/j.cireng.2023.11.009 (2023).
doi: 10.1016/j.cireng.2023.11.009
Anwer, A., Jamil, Y. & Bilal, M. Provision of surgical pre-operative patient counseling services through the metaverse technology. Int. J. Surg. 104, 106792 (2022).
pubmed: 35918004
doi: 10.1016/j.ijsu.2022.106792
Kim, K., Yang, H., Lee, J. & Lee, W. G. Metaverse wearables for immersive digital healthcare: a review. Adv. Sci. 10, e2303234 (2023).
Dawes, A. J., Lin, A. Y., Varghese, C., Russell, M. M. & Lin, A. Y. Mobile health technology for remote home monitoring after surgery: a meta-analysis. Br. J. Surg. 108, 1304–1314 (2021).
pubmed: 34661649
doi: 10.1093/bjs/znab323
Lalitharatne, T. D. et al. Face mediated human–robot interaction for remote medical examination. Sci. Rep. 12, 12592 (2022).
pubmed: 35869154
pmcid: 9307637
doi: 10.1038/s41598-022-16643-z
Vallée, A. Digital twin for healthcare systems. Front. Digital Health 5, 1253050 (2023).
Pourmand, A., Davis, S., Marchak, A., Whiteside, T. & Sikka, N. Virtual reality as a clinical tool for pain management. Curr. Pain. Headache Rep. 22, 53 (2018).
pubmed: 29904806
doi: 10.1007/s11916-018-0708-2
Li, A., Montaño, Z., Chen, V. J. & Gold, J. I. Virtual reality and pain management: current trends and future directions. Pain. Manag. 1, 147–157 (2011).
pubmed: 21779307
doi: 10.2217/pmt.10.15
Rodler, S. et al. Digital therapeutics in urology: an innovative approach to patient care and management. Eur. Urol. Open. Sci. 55, 23–27 (2023).
pubmed: 37593208
pmcid: 10432164
doi: 10.1016/j.euros.2023.07.003
Puliatti, S. et al. New imaging technologies for robotic kidney cancer surgery. Asian J. Urol. 9, 253–262 (2022).
pubmed: 36035346
pmcid: 9399539
doi: 10.1016/j.ajur.2022.03.008
Porpiglia, F. et al. Three-dimensional virtual imaging of renal tumours: a new tool to improve the accuracy of nephrometry scores. BJU Int. 124, 945–954 (2019).
pubmed: 31390140
doi: 10.1111/bju.14894
Sighinolfi, M. C. et al. Three-dimensional customized imaging reconstruction for urological surgery: diffusion and role in real-life practice from an international survey. J. Pers. Med. 13, 1435 (2023).
pubmed: 37888045
pmcid: 10607910
doi: 10.3390/jpm13101435
Agarwal, G. et al. Virtual planning on contralateral hemipelvis for posteriorly fixed acetabular fractures. Eur. J. Trauma Emerg. Surg. 48, 1255–1261 (2022).
pubmed: 33683380
doi: 10.1007/s00068-021-01617-z
Yasen, Z., Robinson, A. P. & Woffenden, H. Advanced preoperative planning techniques in the management of complex proximal humerus fractures. Cureus https://doi.org/10.7759/cureus.51551 (2024).
doi: 10.7759/cureus.51551
pubmed: 38313919
pmcid: 10835086
Bijlstra, O. D. et al. Integration of three-dimensional liver models in a multimodal image-guided robotic liver surgery cockpit. Life 12, 667 (2022).
pubmed: 35629335
pmcid: 9144252
doi: 10.3390/life12050667
Bracale, U. et al. The use of mixed reality in the preoperative planning of colorectal surgery: preliminary experience with a narrative review. Cirug. Españ. https://doi.org/10.1016/j.cireng.2024.01.006 (2024).
doi: 10.1016/j.cireng.2024.01.006
González-López, P. et al. The integration of 3D virtual reality and 3D printing technology as innovative approaches to preoperative planning in neuro-oncology. J. Pers. Med. 14, 187 (2024).
pubmed: 38392620
pmcid: 10890029
doi: 10.3390/jpm14020187
Ujiie, H. et al. Developing a virtual reality simulation system for preoperative planning of robotic-assisted thoracic surgery. J. Clin. Med. 13, 611 (2024).
pubmed: 38276117
pmcid: 10817249
doi: 10.3390/jcm13020611
Dadario, N. B. et al. Examining the benefits of extended reality in neurosurgery: a systematic review. J. Clin. Neurosci. 94, 41–53 (2021).
pubmed: 34863461
doi: 10.1016/j.jocn.2021.09.037
Shirk, J. D. et al. Effect of 3-dimensional, virtual reality models for surgical planning of robotic prostatectomy on trifecta outcomes: a randomized clinical trial. J. Urol. 208, 618–625 (2022).
pubmed: 35848770
doi: 10.1097/JU.0000000000002719
Wang, S. et al. The use of three-dimensional visualization techniques for prostate procedures: a systematic review. Eur. Urol. Focus. 7, 1274–1286 (2021).
pubmed: 32873515
doi: 10.1016/j.euf.2020.08.002
Nazzal, E. M. et al. Applications of extended reality in orthopaedic surgery. J. Bone Jt Surg. 105, 1721–1729 (2023).
doi: 10.2106/JBJS.22.00805
Feodorovici, P. et al. Collaborative virtual reality real-time 3D image editing for chest wall resections and reconstruction planning. Innov. Technol. Tech. Cardiothorac. Vasc. Surg. 18, 525–530 (2023).
doi: 10.1177/15569845231217072
Cooke, C. M., Flaxman, T. E., La Russa, D. J., Duigenan, S. & Singh, S. S. Endometriosis imaging: enter the metaverse of possibilities. J. Obstet. Gynaecol. Can. 45, 309–313 (2023).
pubmed: 36868352
doi: 10.1016/j.jogc.2023.02.011
Werner, H., Ribeiro, G., Arcoverde, V., Lopes, J. & Velho, L. The use of metaverse in fetal medicine and gynecology. Eur. J. Radiol. 150, 110241 (2022).
pubmed: 35299111
doi: 10.1016/j.ejrad.2022.110241
Chengoden, R. et al. Metaverse for healthcare: a survey on potential applications, challenges and future directions. Preprint at https://doi.org/10.48550/arXiv.2209.04160 (2022).
Qayyum, A. et al. Can we revitalize interventional healthcare with AI-XR surgical metaverses? Preprint at http://arxiv.org/abs/2304.00007 (2023).
Lan, A. et al. Exploring the metaverse in hepatobiliary and pancreatic surgery: a case report. In 2023 IEEE Int. Conf. on Medical Artificial Intelligence (MedAI) 43–48 (IEEE, 2023).
Lungu, A. J. et al. A review on the applications of virtual reality, augmented reality and mixed reality in surgical simulation: an extension to different kinds of surgery. Exp. Rev. Med. Devices 18, 47–62 (2021).
doi: 10.1080/17434440.2021.1860750
Checcucci, E. et al. The impact of 3D models on positive surgical margins after robot-assisted radical prostatectomy. World J. Urol. 40, 2221–2229 (2022).
pubmed: 35790535
doi: 10.1007/s00345-022-04038-8
Cheng, C., Lu, M., Zhang, Y. & Hu, X. Effect of augmented reality navigation technology on perioperative safety in partial nephrectomies: a meta-analysis and systematic review. Front. Surg. 10, 1067275 (2023).
pubmed: 37123539
pmcid: 10130447
doi: 10.3389/fsurg.2023.1067275
Kann, M. R. et al. Utilization of augmented reality head-mounted display for the surgical management of thoracolumbar spinal trauma. Medicina 60, 281 (2024).
pubmed: 38399568
pmcid: 10890598
doi: 10.3390/medicina60020281
Ribeiro, M. et al. Augmented reality guided laparoscopic liver resection: a phantom study with intraparenchymal tumors. J. Surg. Res. 296, 612–620 (2024).
pubmed: 38354617
doi: 10.1016/j.jss.2023.12.014
Zattoni, F. et al. Potential applications of new headsets for virtual and augmented reality in urology. Eur. Urol. Focus https://doi.org/10.1016/j.euf.2023.12.003 (2023).
doi: 10.1016/j.euf.2023.12.003
pubmed: 38160172
Farrukh, K. Metaverse in medical education: a paradigm shift. Pak. J. Med. Sci. 40, 255 (2023).
doi: 10.12669/pjms.40.1.8752
Kalınkara, Y. & Özdemir, O. Anatomy in the metaverse: exploring student technology acceptance through the UTAUT2 model. Anat. Sci. Educ. 17, 319–336 (2024).
pubmed: 37942914
doi: 10.1002/ase.2353
Mao, R. Q. et al. Immersive virtual reality for surgical training: a systematic review. J. Surg. Res. 268, 40–58 (2021).
pubmed: 34284320
doi: 10.1016/j.jss.2021.06.045
Koo, H. Training in lung cancer surgery through the metaverse, including extended reality, in the smart operating room of Seoul National University Bundang Hospital, Korea. J. Educ. Eval. Health Prof. 18, 33 (2021).
pubmed: 34965648
pmcid: 8810683
doi: 10.3352/jeehp.2021.18.33
Ammendola, M. et al. Metaverse and telementoring: from surgery to workshop. Surg. Innov. 31, 212–219 (2024).
pubmed: 38378041
doi: 10.1177/15533506241233674
Liu, T.-C., Liu, A.-S., Bai, Z.-G. & Zhao, L. The metaverse training room for cardiovascular interventional surgery. Asian J. Surg. 46, 2780–2781 (2023).
pubmed: 36732186
doi: 10.1016/j.asjsur.2023.01.043
Gonzalez-Romo, N. I. et al. Virtual neurosurgery anatomy laboratory: a collaborative and remote education experience in the metaverse. Surg. Neurol. Int. 14, 90 (2023).
pubmed: 37025523
pmcid: 10070459
doi: 10.25259/SNI_162_2023
Tan, T. F. et al. Metaverse and virtual health care in ophthalmology: opportunities and challenges. Asia-Pacif. J. Ophthalmol. 11, 237–246 (2022).
doi: 10.1097/APO.0000000000000537
Loureiro, S. M. C., Guerreiro, J., Eloy, S., Langaro, D. & Panchapakesan, P. Understanding the use of virtual reality in marketing: a text mining-based review. J. Bus. Res. 100, 514–530 (2019).
doi: 10.1016/j.jbusres.2018.10.055
Lee, T.-G. et al. Public effect of the 2022 Colorectal Cancer Awareness Campaign delivered through a metaverse platform. Ann. Coloproctol. https://doi.org/10.3393/ac.2023.00122.0017 (2023).
doi: 10.3393/ac.2023.00122.0017
pubmed: 38185948
pmcid: 10781603
Alemayehu, D., Hemmings, R., Natarajan, K. & Roychoudhury, S. Perspectives on virtual (remote) clinical trials as the “new normal” to accelerate drug development. Clin. Pharmacol. Ther. 111, 373–381 (2022).
pubmed: 33792920
doi: 10.1002/cpt.2248
Larson, D. B., Magnus, D. C., Lungren, M. P., Shah, N. H. & Langlotz, C. P. Ethics of using and sharing clinical imaging data for artificial intelligence: a proposed framework. Radiology 295, 675–682 (2020).
pubmed: 32208097
doi: 10.1148/radiol.2020192536
Cacciamani, G. E., Chen, A., Gill, I. S. & Hung, A. J. Artificial intelligence and urology: ethical considerations for urologists and patients. Nat. Rev. Urol. 21, 50–59 (2024).
pubmed: 37524914
doi: 10.1038/s41585-023-00796-1
Ethics and medical radiological imaging: a policy brief for health-care providers. WHO https://www.who.int/publications-detail-redirect/9789240047785 (2022).
Ethics and governance of artificial intelligence for health. WHO https://www.who.int/publications-detail-redirect/9789240029200 (2021).
Ullah, A. K. M. A., Delamare, W. & Hasan, K. Exploring users pointing performance on large displays with different curvatures in virtual reality. IEEE Trans. Vis. Comput. Graph. 29, 4535–4545 (2023).
pubmed: 37782612
doi: 10.1109/TVCG.2023.3320242
Wetli, D. J. et al. Improving Visual-Patient-avatar design prior to its clinical release: a mixed qualitative and quantitative study. Diagnostics 12, 555 (2022).
pubmed: 35204644
pmcid: 8871093
doi: 10.3390/diagnostics12020555
Rodler, S. et al. Patients’ trust in artificial intelligence-based decision-making for localized prostate cancer: results from a prospective trial. Eur. Urol. Focus https://doi.org/10.1016/j.euf.2023.10.020 (2023).
AMA Principles of Medical Ethics. American Medical Association https://code-medical-ethics.ama-assn.org/principles (1957).
Regulation (EU) 2017/745 of the European Parliament and of the Council of 5 April 2017 on Medical Devices, Amending Directive 2001/83/EC, Regulation (EC) No 178/2002 and Regulation (EC) No 1223/2009 and Repealing Council Directives 90/385/EEC and 93/42/EEC (text with EEA relevance). Eur-Lex https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32017R0745 (2017).
Duffourc, M. & Gerke, S. Generative AI in health care and liability risks for physicians and safety concerns for patients. JAMA 330, 313–314 (2023).
pubmed: 37410497
doi: 10.1001/jama.2023.9630
Kostick-Quenet, K. & Rahimzadeh, V. Ethical hazards of health data governance in the metaverse. Nat. Mach. Intell. 5, 480–482 (2023).
pubmed: 37334182
pmcid: 10275577
doi: 10.1038/s42256-023-00658-w
Ali, S. et al. Metaverse in healthcare integrated with explainable AI and blockchain: enabling immersiveness, ensuring trust, and providing patient data security. Sensors 23, 565 (2023).
pubmed: 36679361
pmcid: 9862285
doi: 10.3390/s23020565
Li, D. C. Y. The synergistic potential of AI and blockchain for organizations. AI & Soc https://doi.org/10.1007/s00146-023-01838-3 (2024).
Worldcoin whitepaper. Worldcoin https://whitepaper.worldcoin.org/ (2024).
Khetrapal, P. et al. Digital tracking of patients undergoing radical cystectomy for bladder cancer: daily step counts before and after surgery within the iroc randomised controlled trial. Eur. Urol. Oncol. 7, 485–493 (2023).
pubmed: 37852921
doi: 10.1016/j.euo.2023.09.021
Ünsaler, S., Meriç Hafız, A., Gökler, O. & Özkaya, Y. S. Virtual reality simulation-based training in otolaryngology. Virtual Real. 27, 2561–2567 (2023).
doi: 10.1007/s10055-023-00828-6
Aboubieh, A. A. & Aboubih, A. Professional and Personal Development Poster Presentations: metaverse linked otolaryngology training modules: a preliminary report. Otolaryngol. Head Neck Surg. 167 (Suppl. 1), P325–P332 (2022).
Antonelli, A. et al. Holographic reconstructions for preoperative planning before partial nephrectomy: a head-to-head comparison with standard CT scan. Urol. Int. 102, 212–217 (2019).
pubmed: 30540991
doi: 10.1159/000495618
Pecoraro, A. et al. Three-dimensional virtual models assistance predicts higher rates of ‘successful’ minimally invasive partial nephrectomy: an institutional analysis across the available trifecta definitions. World J. Urol. 41, 1093–1100 (2023).
pubmed: 37022496
doi: 10.1007/s00345-023-04310-5
Tiwari, A., Dubey, A., Yadav, A. K., Bhansali, R. & Bagaria, V. A review of smart future of healthcare in the digital age to improve quality of orthopaedic patient care in metaverse called: the Healthverse!! J. Clin. Orthop. Trauma. 48, 102340 (2024).
pubmed: 38292151
doi: 10.1016/j.jcot.2024.102340
Ghaderi, R., Edwards, T., Cobb, J. & Logishetty, K. 890 surgical multidisciplinary team meetings are enhanced by collaboration in the metaverse. Br. J. Surg. 110, znad258.557 (2023).
doi: 10.1093/bjs/znad258.557
Salloum, S. et al. Novel machine learning based approach for analysing the adoption of metaverse in medical training: a UAE case study. Inform. Med. Unlock. 42, 101354 (2023).
doi: 10.1016/j.imu.2023.101354