Overweight/bowel dysmotility crosslinking and analogous laxative actions of two edible wild fruits in obese/constipated rats.

bowel dysmotility constipation/high‐fat diet functional foods metabolic risk of the obesity rats two edible wild fruits

Journal

Neurogastroenterology and motility
ISSN: 1365-2982
Titre abrégé: Neurogastroenterol Motil
Pays: England
ID NLM: 9432572

Informations de publication

Date de publication:
30 Sep 2024
Historique:
revised: 07 07 2024
received: 15 02 2024
accepted: 13 09 2024
medline: 30 9 2024
pubmed: 30 9 2024
entrez: 30 9 2024
Statut: aheadofprint

Résumé

The prompt development of obesity/constipation is the most serious problem for both children and adults. Limited studies suggested an association between them but lacked preclinical studies. This study allows to evaluate their crosslink and to compare the aqueous extracts laxative actions of two edible wild fruits of Arbutus unedo (AUAE) and Crataegus monogyna (CMAE) in constipated high-fat diet (HFD) rats. Wistar rats were divided into experimental groups for 13 weeks: standard (SD) and HFD groups. SD-rats were randomly redivided into 2 groups: SD and SD + Loperamide (LOP, 3 mg/kg, b.w.). HFD-rats were randomly reseparated into HFD-group, (HFD + LOP)-group, [HFD + Yohimbine (YOH, 2 mg/kg, b.w.)]-group, [HFD+ LOP]-groups+ various doses of AUAE or CMAE (75, 150, and 300 mg/kg, b.w.). Diversified indicators were investigated to achieve the expected objectives, including; fecal parameters, gastrointestinal transit (GIT), gastric emptying (GE), oxidative stress-(OxS), blood biochemical analysis, and accompanied small/large bowel histological modification. The liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS) analysis of AUAE and CMAE allowed the identification of 11 and 6 phenolic compounds, respectively. In HFD-rats, the subsequent dysregulation of GI motility was markedly aggravated. More importantly, with the same way (CMAE and AUAE)-treated groups showed alleviated outcomes for the following: most stool parameters, GIT, and GE were remarkably recovered; a similar recovery pattern was observed in the histopathological structure, OxS, and blood biochemical indicators. Our results experimentally confirmed the crosslink between overweight and constipation and both fruits have potential as functional foods to reduce metabolic risk of the obesity associated with bowel dysmotility.

Sections du résumé

BACKGROUND BACKGROUND
The prompt development of obesity/constipation is the most serious problem for both children and adults. Limited studies suggested an association between them but lacked preclinical studies. This study allows to evaluate their crosslink and to compare the aqueous extracts laxative actions of two edible wild fruits of Arbutus unedo (AUAE) and Crataegus monogyna (CMAE) in constipated high-fat diet (HFD) rats.
METHODS METHODS
Wistar rats were divided into experimental groups for 13 weeks: standard (SD) and HFD groups. SD-rats were randomly redivided into 2 groups: SD and SD + Loperamide (LOP, 3 mg/kg, b.w.). HFD-rats were randomly reseparated into HFD-group, (HFD + LOP)-group, [HFD + Yohimbine (YOH, 2 mg/kg, b.w.)]-group, [HFD+ LOP]-groups+ various doses of AUAE or CMAE (75, 150, and 300 mg/kg, b.w.). Diversified indicators were investigated to achieve the expected objectives, including; fecal parameters, gastrointestinal transit (GIT), gastric emptying (GE), oxidative stress-(OxS), blood biochemical analysis, and accompanied small/large bowel histological modification.
KEY RESULTS RESULTS
The liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS) analysis of AUAE and CMAE allowed the identification of 11 and 6 phenolic compounds, respectively. In HFD-rats, the subsequent dysregulation of GI motility was markedly aggravated. More importantly, with the same way (CMAE and AUAE)-treated groups showed alleviated outcomes for the following: most stool parameters, GIT, and GE were remarkably recovered; a similar recovery pattern was observed in the histopathological structure, OxS, and blood biochemical indicators.
CONCLUSIONS & INFERENCES CONCLUSIONS
Our results experimentally confirmed the crosslink between overweight and constipation and both fruits have potential as functional foods to reduce metabolic risk of the obesity associated with bowel dysmotility.

Identifiants

pubmed: 39344995
doi: 10.1111/nmo.14933
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e14933

Informations de copyright

© 2024 The Author(s). Neurogastroenterology & Motility published by John Wiley & Sons Ltd.

Références

Chatoor D, Emmnauel A. Constipation and evacuation disorders. Best Pract Res Clin Gastroenterol. 2009;23(4):517‐530. doi:10.1016/j.bpg.2009.05.001
Forootan M, Bagheri N, Darvishi M. Chronic Constipation. Medicine. 2018;97(20):e10631. doi:10.1097/md.0000000000010631
Jiang H, Dong J, Jiang S, et al. Effect of duriozibethinus rind polysaccharide on functional constipation and intestinal microbiota in rats. Food Res Int. 2020;136:109316. doi:10.1016/j.foodres.2020.109316
Andromanakos N, Skandalakis P, Troupis T, Filippou D. Constipation of anorectal outlet obstruction: pathophysiology, evaluation and management. J Gastroenterol Hepatol. 2006;21(4):638‐646. doi:10.1111/j.1440-1746.2006.04333.x
Rao SSC, Meduri K. What is necessary to diagnose constipation? Best Pract Res Clin Gastroenterol. 2011;25(1):127‐140. doi:10.1016/j.bpg.2010.11.001
Alsheridah N, Akhtar S. Diet, obesity and colorectal carcinoma risk: results from a national cancer registry‐based middle‐eastern study. BMC Cancer. 2018;18(1):1227. doi:10.1186/s12885-018-5132-9
Sundbøll J, Thygesen SK, Veres K, et al. Risk of cancer in patients with constipation. Clin Epidemiol. 2019;11:299‐310. doi:10.2147/clep.s205957
Silveira EA, de Carvalho Santos ASA, Ribeiro JN, Noll M, Dos Santos Rodrigues AP, de Oliveira C. Prevalence of constipation in adults with obesity class II and III and associated factors. BMC Gastroenterol. 2021;21:217. doi:10.1186/s12876-021-01806-5
Silveira EA, Kliemann N, Noll M, Sarrafzadegan N, Oliveira C. Visceral obesity and incident cancer and cardiovascular disease: an integrative review of the epidemiological evidence. Obes Rev. 2020;22(1):e13088. doi:10.1111/obr.13088
Al Mushref M, Srinivasan S. Effect of high fat‐diet and obesity on gastrointestinal motility. Ann Transl Med. 2013;1(2):14. doi:10.3978/j.issn.2305-5839.2012.11.01
Bertrand RL, Senadheera S, Tanoto A, et al. Serotonin availability in rat colon is reduced during a Western diet model of obesity. Am J Physiol Gastrointest Liver Physiol. 2012;303:G424‐G434. doi:10.1152/ajpgi.00048.2012
Fosnes GS, Lydersen S, Farup PG. Constipation and diarrhoea—common adverse drug reactions? A cross sectional study in the general population. BMC Clin Pharmacol. 2011;11(1):2. doi:10.1186/1472-6904-11-2
Tantawy S, Kamel D, Abdel‐Basset W, Elgohary H. Effects of a proposed physical activity and diet control to manage constipation in middle‐aged obese women. Diabetes Metab Syndr Obes. 2017;10:513‐519. doi:10.2147/dmso.s140250
Han SH, Park K, Kim EY, Ahn SH, Lee H‐S, Suh HJ. Cactus (Opuntia humifusa) water extract ameliorates loperamide‐induced constipation in rats. BMC Complement Altern Med. 2017;17(1):49. doi:10.1186/s12906-016-1552-8
Morales D. Use of strawberry tree (Arbutus unedo) as a source of functional fractions with biological activities. Foods. 2022;11(23):3838. doi:10.3390/foods11233838
Šic Žlabur J, Bogdanović S, Voća S, Skendrović BM. Biological potential of fruit and leaves of strawberry tree (Arbutus unedo L.) from Croatia. Molecules. 2020;25:5102. doi:10.3390/molecules25215102
Lis M, Szczypka M, Suszko‐Pawłowska A, Sokół‐Łętowska A, Kucharska A, Obmińska‐Mrukowicz B. Hawthorn (Crataegus monogyna L.) phenolicextractmodulates lymphocyte subsets and humoral immune response in mice. Planta Med. 2019;86(2):160‐168. doi:10.1055/a-1045-5437
Kumar D, Arya V, Bhat ZA, Khan NA, Prasad DN. The genus crataegus: chemical and pharmacological perspectives. Rev Bras. 2012;22(5):1187‐1200. doi:10.1590/s0102-695x2012005000094
Kao E‐S, Wang C‐J, Lin W‐L, Yin Y‐F, Wang C‐P, Tseng T‐H. Anti‐inflammatory potential of flavonoid contents from dried fruit of crataegus pinnatifida in vitro and in vivo. J Agric Food Chem. 2004;53(2):430‐436. doi:10.1021/jf040231f
Malekinejad H, Shafie‐Irannejad V, Hobbenaghi R, Tabatabaie SH, Moshtaghion S‐M. Comparative protective effect of hawthorn berry hydroalcoholic extract, atorvastatin, and mesalamine on experimentally induced colitis in rats. J Med Food. 2013;16(7):593‐601. doi:10.1089/jmf.2012.2672
Tadić VM, Dobrić S, Marković GM, et al. Anti‐inflammatory, gastroprotective, free‐radical‐scavenging, and antimicrobial activities of hawthorn berries ethanol extract. J Agric Food Chem. 2008;56(17):7700‐7709. doi:10.1021/jf801668c
AOAC: Official Methods of Analysis. Association of Official Analytical Chemists. 15th ed.; Washington, D.C. USA. 1990.
Godin B, Ghysel F, Agneessens R, et al. Determination of cellulose hemicelluloses, lignin, and ashes in various lignocellulosic crops dedicated to the production of second‐generation bioethanol. Biotechnol Agron Soc Environ. 2010;14:549‐560.
Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci. 1991;74(10):3583‐3597. doi:10.3168/jds.s0022-0302(91)78551-2
Jdir H, Jridi M, Mabrouk M, et al. The rocket, Diplotaxis simplex, as a functional ingredient: LC‐ESI‐MS analysis and its effect on antioxidant and physical properties of bread. Journal of Food and Nutrition Research. 2017;5:197‐204. doi:10.12691/jfnr-5-3-10
Smine S, Obry A, Kadri S, et al. Brain proteomic modifications associated to protective effect of grape extract in a murine model of obesity. Biochim Biophys Acta Proteins Proteomics. 2017;1865(5):578‐588. doi:10.1016/j.bbapap.2017.03.001
Malafaia AB, Nassif PA, Ribas CA, Ariede BL, Sue KN, Cruz MA. Indução de Obesidade com sacarose EM Ratos. ABCD‐Arq Bras Cir Di (São Paulo). 2013;26(suppl 1):17‐21. doi:10.1590/s0102-67202013000600005
Rtibi K, Grami D, Selmi S, Amri M, Sebai H, Marzouki L. Vinblastine, an anticancer drug, causes constipation and oxidative stress as well as others disruptions in intestinal tract in rat. Toxicol Rep. 2017;4:221‐225. doi:10.1016/j.toxrep.2017.04.006
Ali BH, Bashir AA. The effect of some ?2‐adrenoceptor agonists and antagonists on gastrointestinal transit in mice: influence of morphine, castor oil and glucose. Clin Exp Pharmacol Physiol. 1993;20(1):1‐6. doi:10.1111/j.1440-1681.1993.tb01495.x
Kakkar P, Das B, Viswanathan PN. Modified spectrophotometric assay of SOD. Indian J Biochem Biophys. 1984;21:130‐132.
Aebi H. Catalase. In: Bergmeyer HU, ed. Methods in Enzymatic Analysis. Vol 29. Academic Press Inc; 1974:673‐686.
Flohé L, Günzler WA. Assays of glutathione peroxidase. Methods Enzymol. 1984;105:114‐120.
Draper HH, Hadley M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 1990;186:421‐431.
Hu ML, Dillard CJ. Plasma SH and GSH measurement. Methods Enzymol. 1994;233:385‐387.
Hyland NP, Chambers AP, Keenan CM, Pittman QJ, Sharkey KA. Differential adipokine response in genetically predisposed lean and obese rats during inflammation: a role in modulating experimental colitis? Am J Physiol Gastrointest Liver Physiol. 2009;297(5):G869‐G877. doi:10.1152/ajpgi.00164.2009
Kakino M, Izuta H, Ito T, et al. Agarwood induced laxative effectsviaacetylcholine receptors on loperamide‐induced constipation in mice. Biosci Biotechnol Biochem. 2010;74(8):1550‐1555. doi:10.1271/bbb.100122
Lee H‐Y, Kim J‐H, Jeung H‐W, et al. Effects of ficuscarica paste on loperamide‐induced constipation in rats. Food Chem Toxicol. 2012;50(3–4):895‐902. doi:10.1016/j.fct.2011.12.001
Méité S, Bahi C, Yéo D, Datté J‐Y, Djaman J‐A, N'guessan D‐J. Laxative activities of Mareya micrantha (Benth.) müll. Arg. (Euphorbiaceae) leaf aqueous extract in rats. BMC Complement Altern Med. 2010;10(1):7. doi:10.1186/1472-6882-10-7
Liu J, Wang S, Yi R, et al. Limosilactobacillu spentosus isolated from mustard relieves drug‐induced constipation in mice fed a high‐fat diet by modulating enteric neurotransmitter function. Probiotics Antimicrob Proteins. 2022;15:1371‐1381. doi:10.1007/s12602-022-09991-9
Hughes S, Higgs NB, Turnberg LA. Loperamide has antisecretory activity in the human jejunum in vivo. Gut. 1984;25(9):931‐935. doi:10.1136/gut.25.9.931
Sohji Y, Kawashima K, Shimizu M. Pharmacological studies of loperamide, an anti‐diarrheal agent. II. Effects on peristalsis of the small intestine and colon in Guinea pigs. Nihon Yakurigaku Zasshi. 1978;74(1):155‐163. doi:10.1254/fpj.74.155
Yamada K, Onoda Y. Comparison of the effects of T‐1815, yohimbine and naloxone on mouse colonic propulsion. J Smooth Muscle Res. 1993;29(2):47‐53. doi:10.1540/jsmr.29.47
Wintola OA, Sunmonu TO, Afolayan AJ. The effect of Aloe ferox mill. In the treatment of loperamide‐induced constipation in wistar rats. BMC Gastroenterol. 2010;10(1):95. doi:10.1186/1471-230x-10-95
Yang Z‐H, Yu H‐J, Pan A, et al. Cellular mechanisms underlying the laxative effect of flavonol naringenin on rat constipation model. PLoS One. 2008;3(10):e3348. doi:10.1371/journal.pone.0003348
Shahbazian A, Heinemann A, Schmidhammer H, Beubler E, Holzer‐Petsche U, Holzer P. Involvement of μ‐ and κ‐, but not δ‐, opioid receptors in the peristaltic motor depression caused by endogenous and exogenous opioids in the Guinea‐pig intestine. Br J Pharmacol. 2002;135(3):741‐750. doi:10.1038/sj.bjp.0704527
Wingate D, Phillips SF, Lewis SJ, et al. Guidelines for adults on self‐medication for the treatment of acute diarrhoea. Aliment Pharmacol Ther. 2001;15(6):773‐782. doi:10.1046/j.1365-2036.2001.00993.x
Diener M, Knobloch SF, Rummel W. Action of loperamide on neuronally mediated and ca2+− or camp‐mediated secretion in rat colon. Eur J Pharmacol. 1988;152(3):217‐225. doi:10.1016/0014-2999(88)90716-9
Sagbas HI, Ilhan G, Zitouni H, et al. Morphological and biochemical characterization of diverse strawberry tree (arbutus unedo L.) genotypes from northern Turkey. Agronomy. 2020;10(10):1581. doi:10.3390/agronomy10101581
Trumbo P, Schlicker S, Yates AA, Poos M. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc. 2002;102(11):1621‐1630. doi:10.1016/s0002-8223(02)90346-9
European Parliament and Council. Regulation (EU) No. 1169/2011 of the European Parliament and of the Council of 25 October 2011 On the provision of food information to consumers. Off J Eur Union. 2011;304:18‐63.
Touaibia M, Moulay F, Saidi F. Valorisation of the vitamin potential of hawthorn fruits (Crataegus monogyna Jacq). Green Appl Chem. 2022;15:46‐50.
Abidi C, Rtibi K, Boutahiri S, et al. Dose‐dependent action of zingiber officinale on colonic dysmotility and ex vivo spontaneous intestinal contraction modulation. Dose‐Response. 2022;20(3):155932582211275. doi:10.1177/15593258221127556
Yilmazer‐Musa M, Griffith MA, Michels AJ, Schneider E, Frei B. Inhibition of α‐amylase and α‐glucosidase activity by tea and grape seed extracts and their constituent Catechins. J Agric Food Chem. 2012;60(36):8924‐8929.
Dubey S, Ganeshpurkar A, Ganeshpurkar A, Bansal D, Dubey N. Glycolytic enzyme inhibitory and antiglycation potential of rutin. Future J Pharm Sci. 2017;3(2):158‐162. doi:10.1016/j.fjps.2017.05.005
Shen H, Wang J, Ao J, et al. Inhibitory kinetics and mechanism of active compounds in green walnut husk against α‐glucosidase: spectroscopy and molecular docking analyses. Lebensm Wiss Technol. 2022;172:114179. doi:10.1016/j.lwt.2022.114179
Jabir NR, Khan FR, Tabrez S. Cholinesterase targeting by polyphenols: a therapeutic approach for the treatment of Alzheimer's disease. CNS Neurosci Ther. 2018;24(9):753‐762. doi:10.1111/cns.12971
Jabri M‐A, Wannes D, Hajji N, Sakly M, Marzouki L, Sebai H. Role of laxative and antioxidant properties of Malva sylvestris leaves in constipation treatment. Biomed Pharmacother. 2017;89:29‐35. doi:10.1016/j.biopha.2017.02.020
Dey Y, Mahor S, Kumar D, Wanjari M, Gaidhani S, Jadhav A. Gastrokinetic activity of Amorphophallus paeoniifolius tuber in rats. J Intercult Ethnopharmacol. 2016;5(1):36. doi:10.5455/jice.20151211063819
Doi H, Sakakibara R, Sato M, et al. Dietary herb extract rikkunshi‐to ameliorates gastroparesis in parkinson's disease: a pilot study. Eur Neurol. 2014;71(3–4):193‐195. doi:10.1159/000355608
Falkén Y, Webb D‐L, Abraham‐Nordling M, Kressner U, Hellström PM, Näslund E. Intravenous ghrelin accelerates postoperative GE and time to first bowel movement in humans. Neurogastroenterol Motil. 2013;25(6):474‐480. doi:10.1111/nmo.12098
Inoue S, Sakamoto Y, Sekino Y, et al. Low‐doseramosetron accelerates gastric emptying in the early phase: a crossover study in healthy volunteers using a continuous real‐time 13C breath test (breathid system). Turk J Gastroenterol. 2015;26(2):123‐127. doi:10.5152/tjg.2014.4768
Ayaz FA, Kucukislamoglu M, Reunanen M. Sugar, non‐volatile and phenolic acids composition of strawberry tree (Arbutus unedo L. var. ellipsoidea) fruits. J Food Compos Anal. 2000;13(2):171‐177. doi:10.1006/jfca.1999.0868
Pawlowska AM, De Leo M, Braca A. Phenolics of arbutus unedo L. (ericaceae) fruits: identification of anthocyanins and gallic acid derivatives. J Agric Food Chem. 2006;54(26):10234‐10238. doi:10.1021/jf062230o
PallaufK R‐GJC, del Castillo MD, Cano MP, de Pascual‐Teresa S. Characterization of the antioxidant composition of strawberry tree (Arbutus unedo L.) fruits. J Food Compos Anal. 2008;21(4):273‐281. doi:10.1016/j.jfca.2007.11.006
Fortalezas S, Tavares L, Pimpão R, et al. Antioxidant properties and neuroprotective capacity of strawberry tree fruit (arbutus unedo). Nutrients. 2010;2(2):214‐229. doi:10.3390/nu2020214
Chen X, Xu G, Li X, Li Z, Ying H. Purification of an α‐amylase inhibitor in a polyethylene glycol/fructose‐1,6‐bisphosphate trisodium salt aqueous two‐phase system. Process Biochem. 2008;43:765‐768. doi:10.1016/j.procbio.2008.03.003
Pizzino G, Irrera N, Cucinotta M, et al. Oxidative stress: harms and benefits for human health. Oxidative Med Cell Longev. 2017;2017:1‐13. doi:10.1155/2017/8416763
Morales D. Oak trees (Quercus spp.) as a source of extracts with biological activities: a narrative review. Trends Food Sci Technol. 2021;109:116‐125. doi:10.1016/j.tifs.2021.01.029
Yusoff IM, Mat Taher Z, Rahmat Z, Chua LS. A review of ultrasound‐assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food Res Int. 2022;157:111268. doi:10.1016/j.foodres.2022.111268
Mendes L, de Freitas V, Baptista P, Carvalho M. Comparative antihemolytic and radical scavenging activities of strawberry tree (arbutus unedo L.) leaf and fruit. Food Chem Toxicol. 2011;49(9):2285‐2291. doi:10.1016/j.fct.2011.06.028
Jurica K, BrčićKaračonji I, Mikolić A, Milojković‐Opsenica D, Benković V, Kopjar N. In vitro safety assessment of the strawberry tree (Arbutus unedo L.) water leaf extract and arbutin in human peripheral blood lymphocytes. Cytotechnology. 2018;70(4):1261‐1278. doi:10.1007/s10616-018-0218-4
Rosa A, Tuberoso CI, Atzeri A, Melis MP, Bifulco E, Dessì MA. Antioxidant profile of strawberry tree honey and its marker homogentisic acid in several models of oxidative stress. Food Chem. 2011;129(3):1045‐1053. doi:10.1016/j.foodchem.2011.05.072
Tariba Lovaković B, Lazarus M, Brčić Karačonji I, et al. Multi‐elemental composition and antioxidant properties of strawberry tree (arbutus unedo L.) honey from the coastal region of Croatia: risk‐benefit analysis. J Trace Elem Med Biol. 2018;45:85‐92. doi:10.1016/j.jtemb.2017.09.022
Osés SM, Nieto S, Rodrigo S, et al. Authentication of strawberry tree (Arbutus unedo L.) honeys from southern Europe based on compositional parameters and biological activities. Food Biosci. 2020;38:100768. doi:10.1016/j.fbio.2020.100768
Ganhão R, Estévez M, Kylli P, Heinonen M, Morcuende D. Characterization of selected wild Mediterranean fruits and comparative efficacy as inhibitors of oxidative reactions in emulsified raw pork burger patties. J Agric Food Chem. 2010;58(15):8854‐8861. doi:10.1021/jf101646y
McCann MJ, Dalziel JE, Bibiloni R, Barnett MPG. An integrated approach to assessing the bio‐activity of nutrients in vitro: the anti‐oxidant effects of catechin and chlorogenic acid as an example. Integr Food Nutr Metab. 2015;2(3):197‐204. doi:10.15761/IFNM.1000130
Platzer M, Kiese S, Tybussek T, et al. Radical scavenging mechanisms of phenolic compounds: a quantitative structure‐property relationship (QSPR) study. Front Nutr. 2022;9:882458. doi:10.3389/fnut.2022.882458
Mhya DH, Mohammed A, Dawus TT. Investigation of NADPH‐Oxidase's binding subunit(s) for Catechin compounds induce inhibition. Eur J Adv Chem Res. 2023;4(3):10‐18. doi:10.24018/ejchem.2023.4.3.140
Liang N, Kitts DD. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients. 2016;8:E16. doi:10.3390/nu8010016
Shimotoyodome A, Meguro S, Hase T, Tokimitsu I, Sakata T. Decreased colonic mucus in rats with loperamide‐induced constipation. Comp Biochem Physiol A Mol Integr Physiol. 2000;126(2):203‐212. doi:10.1016/s1095-6433(00)00194-x

Auteurs

Soumaya Wahabi (S)

University of Jendouba, Higher Institute of Biotechnology of Beja, LR: Functional Physiology and Valorization of Bio-Resources, Beja, Tunisia.

Kais Rtibi (K)

University of Jendouba, Higher Institute of Biotechnology of Beja, LR: Functional Physiology and Valorization of Bio-Resources, Beja, Tunisia.

Chirine Brinsi (C)

University of Jendouba, Higher Institute of Biotechnology of Beja, LR: Functional Physiology and Valorization of Bio-Resources, Beja, Tunisia.

Mourad Jridi (M)

University of Jendouba, Higher Institute of Biotechnology of Beja, LR: Functional Physiology and Valorization of Bio-Resources, Beja, Tunisia.

Hichem Sebai (H)

University of Jendouba, Higher Institute of Biotechnology of Beja, LR: Functional Physiology and Valorization of Bio-Resources, Beja, Tunisia.

Classifications MeSH