Exploring CD26
CD26
CD26−/lo lymphocytes
DPP4
T helper lymphocytes
asthma
Journal
Allergy
ISSN: 1398-9995
Titre abrégé: Allergy
Pays: Denmark
ID NLM: 7804028
Informations de publication
Date de publication:
25 Sep 2024
25 Sep 2024
Historique:
revised:
20
08
2024
received:
27
06
2024
accepted:
07
09
2024
medline:
25
9
2024
pubmed:
25
9
2024
entrez:
25
9
2024
Statut:
aheadofprint
Résumé
Asthma pathology may induce changes in naïve/memory lymphocyte proportions assessable through the evaluation of surface CD26 (dipeptidyl peptidase 4/DPP4) levels. Our aim was to investigate the association of asthma phenotype/severity with the relative frequency of CD26 The proportion of CD26 Cluster analysis including clinical and flow cytometry data resulted in four groups, two of them with opposite inflammatory profiles (neutrophilic vs. eosinophilic). Neutrophilic asthma presented reduced CD4 There is an association between CD26 levels in different lymphocyte subsets and asthma phenotype/severity. CD4
Sections du résumé
BACKGROUND
BACKGROUND
Asthma pathology may induce changes in naïve/memory lymphocyte proportions assessable through the evaluation of surface CD26 (dipeptidyl peptidase 4/DPP4) levels. Our aim was to investigate the association of asthma phenotype/severity with the relative frequency of CD26
METHODS
METHODS
The proportion of CD26
RESULTS
RESULTS
Cluster analysis including clinical and flow cytometry data resulted in four groups, two of them with opposite inflammatory profiles (neutrophilic vs. eosinophilic). Neutrophilic asthma presented reduced CD4
CONCLUSION
CONCLUSIONS
There is an association between CD26 levels in different lymphocyte subsets and asthma phenotype/severity. CD4
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NextGeneration EU/PRTR
Organisme : European Union ERDF funds
ID : RYC2021-032676-I
Organisme : Instituto de Salud Carlos III
Organisme : Agencia Estatal de Investigación
ID : MCIN/AEI/10.13039/501100011033(RYC2021-032676-I)
Informations de copyright
© 2024 The Author(s). Allergy published by European Academy of Allergy and Clinical Immunology and John Wiley & Sons Ltd.
Références
Holgate ST, Wenzel S, Postma DS, Weiss ST, Renz H, Sly PD. Asthma. Nat Rev Dis Prim. 2015;1(1):1‐22.
Wisniewski JA, Muehling LM, Eccles JD, et al. Th1 signatures are present in the lower airways of children with severe asthma, regardless of allergic status. J Allergy Clin Immunol. 2018;141(6):2048‐2060.e13.
Vroman H, Bergen IM, van Hulst JAC, et al. TNF‐α‐induced protein 3 levels in lung dendritic cells instruct TH2 or TH17 cell differentiation in eosinophilic or neutrophilic asthma. J Allergy Clin Immunol. 2018;141(5):1620‐1633.e12.
McKinley L, Alcorn JF, Peterson A, et al. TH17 cells mediate steroid‐resistant airway inflammation and airway hyperresponsiveness in mice. J Immunol. 2008;181(6):4089‐4097.
Lepretre F, Gras D, Chanez P, Duez C. Natural killer cells in the lung: potential role in asthma and virus‐induced exacerbation? Eur Respir Rev. 2023;32(169):230036.
Bergantini L, d'Alessandro M, Pianigiani T, Cekorja B, Bargagli E, Cameli P. Benralizumab affects NK cell maturation and proliferation in severe asthmatic patients. Clin Immunol. 2023;253:109680.
Koh J, Woo YD, Yoo HJ, et al. De novo fatty‐acid synthesis protects invariant NKT cells from cell death, thereby promoting their homeostasis and pathogenic roles in airway hyperresponsiveness. elife. 2023;12:RP87536.
Zarobkiewicz MK, Wawryk‐Gawda E, Kowalska W, Janiszewska M, Bojarska‐Junak A. γδ T lymphocytes in asthma: a complicated picture. Arch Immunol Ther Exp. 2021;69(1):4.
Nieto‐Fontarigo JJ, Salgado FJ, San‐José ME, et al. Expansion of different subpopulations of CD26−/low T cells in allergic and non‐allergic asthmatics. Sci Rep. 2019;9(1):7556.
Tissue expression of DPP4—Summary—The Human Protein Atlas. 2023 Available from: https://www.proteinatlas.org/ENSG00000197635‐DPP4/tissue
Durinx C, Lambeir AM, Bosmans E, et al. Molecular characterization of dipeptidyl peptidase activity in serum: soluble CD26/dipeptidyl peptidase IV is responsible for the release of X‐pro dipeptides. Eur J Biochem. 2000;267(17):5608‐5613.
Deacon CF. Metabolism of GIP and the contribution of GIP to the glucose‐lowering properties of DPP‐4 inhibitors. Peptides. 2020;125:170196.
Enz N, Vliegen G, De Meester I, Jungraithmayr W. CD26/DPP4—a potential biomarker and target for cancer therapy. Pharmacol Ther. 2019;198:135‐159.
Klemann C, Wagner L, Stephan M, von Hörsten S. Cut to the chase: a review of CD26/dipeptidyl peptidase‐4's (DPP4) entanglement in the immune system. Clin Exp Immunol. 2016;185(1):1‐21.
Nieto‐Fontarigo JJ, González‐Barcala FJ, San José E, Arias P, Nogueira M, Salgado FJ. CD26 and asthma: a comprehensive review. Clin Rev Allergy Immunol. 2019;56(2):139‐160.
Sethi GS, Gracias DT, Gupta RK, et al. Anti‐CD3 inhibits circulatory and tissue‐resident memory CD4 T cells that drive asthma exacerbations in mice. Allergy. 2023;78(8):2168‐2180.
Nielsen BR, Ratzer R, Börnsen L, von Essen MR, Christensen JR, Sellebjerg F. Characterization of naïve, memory and effector T cells in progressive multiple sclerosis. J Neuroimmunol. 2017;310:17‐25.
Vázquez‐Mera S, Martelo‐Vidal L, Miguéns‐Suárez P, et al. Serum exosome inflamma‐miRs are surrogate biomarkers for asthma phenotype and severity. Allergy. 2023;78(1):141‐155.
Chantada‐Vázquez MDP, García Vence M, Serna A, Núñez C, Bravo SB. SWATH‐MS protocols in human diseases. Methods Mol Biol. 2021;2259:105‐141.
Hao Y, Hao S, Andersen‐Nissen E, et al. Integrated analysis of multimodal single‐cell data. Cell. 2021;184(13):3573‐3587.e29.
Speir ML, Bhaduri A, Markov NS, et al. UCSC cell browser: visualize your single‐cell data. Bioinformatics. 2021;37(23):4578‐4580.
Yasumizu Y, Takeuchi D, Morimoto R, et al. Single‐cell transcriptome landscape of circulating CD4+ T cell populations in autoimmune diseases. Cell Genom. 2024;4(2):100473.
Tarhan L, Bistline J, Chang J, Galloway B, Hanna E, Weitz E. Single Cell Portal: An Interactive Home for Single‐Cell Genomics Data. 2023. doi:10.1101/2023.07.13.548886
Hartigan JA, Wong MA. Algorithm AS 136: a K‐means clustering algorithm. Appl Stat. 1979;28(1):100.
Kaufman L, Rousseeuw PJ. Finding Groups in Data: An Introduction to Cluster Analysis [Internet]. 1st ed. Wiley (Wiley Series in Probability and Statistics); 1990. doi:10.1002/9780470316801
Nieto‐Fontarigo JJ, González‐Barcala FJ, San‐José ME, et al. Expansion of a CD26low effector TH subset and reduction in circulating levels of sCD26 in stable allergic asthma in adults. J Investig Allergol Clin Immunol. 2018;28(2):113‐125.
Matabuena M, Salgado FJ, Nieto‐Fontarigo JJ, et al. Identification of asthma phenotypes in the Spanish MEGA cohort study using cluster analysis. Arch Bronconeumol. 2023;59(4):223‐231.
Haldar P, Pavord ID, Shaw DE, et al. Cluster analysis and clinical asthma phenotypes. Am J Respir Crit Care Med. 2008;178(3):218‐224.
Moore WC, Meyers DA, Wenzel SE, et al. Identification of asthma phenotypes using cluster analysis in the severe asthma research program. Am J Respir Crit Care Med. 2010;181(4):315‐323.
Lefaudeux D, De Meulder B, Loza MJ, et al. U‐BIOPRED clinical adult asthma clusters linked to a subset of sputum omics. J Allergy Clin Immunol. 2017;139(6):1797‐1807.
Cordero OJ, Varela‐Calviño R, López‐González T, et al. CD26 expression on T helper populations and sCD26 serum levels in patients with rheumatoid arthritis. PLoS One. 2015;10(7):e0131992.
Sato M, Matsuo K, Susami Y, et al. A CCR4 antagonist attenuates atopic dermatitis‐like skin inflammation by inhibiting the recruitment and expansion of Th2 cells and Th17 cells. Int Immunol. 2023;35(9):437‐446.
Imai T, Nagira M, Takagi S, et al. Selective recruitment of CCR4‐bearing Th2 cells toward antigen‐presenting cells by the CC chemokines thymus and activation‐regulated chemokine and macrophage‐derived chemokine. Int Immunol. 1999;11(1):81‐88.
Yu K, Chen Z, Khatri I, Gorczynski RM. CCR4 dependent migration of Foxp3+ Treg cells to skin grafts and draining lymph nodes is implicated in enhanced graft survival in CD200tg recipients. Immunol Lett. 2011;141(1):116‐122.
Bernengo MG, Novelli M, Quaglino P, et al. The relevance of the CD4+ CD26‐ subset in the identification of circulating Sézary cells. Br J Dermatol. 2001;144(1):125‐135.
Onrust‐van Schoonhoven A, de Bruijn MJW, Stikker B, et al. 3D chromatin reprogramming primes human memory TH2 cells for rapid recall and pathogenic dysfunction. Sci Immunol. 2023;8(85):eadg3917.
Matsuoka M. Human T‐cell leukemia virus type I (HTLV‐I) infection and the onset of adult T‐cell leukemia (ATL). Retrovirology. 2005;26(2):27.
Lin YW, Hsu YH, Lee MY. Circulating clover‐leaf cells presenting in acute‐type adult T‐cell leukemia‐lymphoma. EJHaem. 2022;3(4):1404‐1405.
Neely SM. Adult T‐cell leukemia‐lymphoma. West J Med. 1989;150(5):557‐561.
Binesh F, Mirjalili MR, Vahedian H, Bashiri H. Adult T‐cell lymphoma/leukaemia with haematemesis as a prodromal manifestation. BMJ Case Rep. 2012;2012:bcr2012006957.
Vonderheid EC, Sobel EL, Nowell PC, Finan JB, Helfrich MK, Whipple DS. Diagnostic and prognostic significance of Sézary cells in peripheral blood smears from patients with cutaneous T cell lymphoma. Blood. 1985;66(2):358‐366.
Kondo S, Kotani T, Tamura K, et al. Expression of CD26/dipeptidyl peptidase IV in adult T cell leukemia/lymphoma (ATLL). Leuk Res. 1996;20(4):357‐363.
Shao H, Yuan CM, Xi L, et al. Minimal residual disease detection by flow cytometry in adult T‐cell leukemia/lymphoma. Am J Clin Pathol. 2010;133(4):592‐601.
Karube K, Ohshima K, Tsuchiya T, et al. Expression of FoxP3, a key molecule in CD4CD25 regulatory T cells, in adult T‐cell leukaemia/lymphoma cells. Br J Haematol. 2004;126(1):81‐84.
Matsubar Y, Hori T, Morita R, Sakaguchi S, Uchiyama T. Delineation of immunoregulatory properties of adult T‐cell leukemia cells. Int J Hematol. 2006;84(1):63‐69.
Ben‐Ishay Z, Farber E. Protective effects of an inhibitor of protein synthesis, cycloheximide, on bone marrow damage induced by cytosine arabinoside or nitrogen mustard. Lab Investig. 1975;33(5):278‐290.
Murata K, Yamada Y, Kamihira S, et al. Frequency of eosinophilia in adult T‐cell leukemia/lymphoma. Cancer. 1992;69(4):966‐971.
Ogata M, Ogata Y, Kohno K, et al. Eosinophilia associated with adult T‐cell leukemia: role of interleukin 5 and granulocyte‐macrophage colony‐stimulating factor. Am J Hematol. 1998;59(3):242‐245.
Blumenthal SG, Aichele G, Wirth T, Czernilofsky AP, Nordheim A, Dittmer J. Regulation of the human interleukin‐5 promoter by Ets transcription factors. Ets1 and Ets2, but not Elf‐1, cooperate with GATA3 and HTLV‐I Tax1. J Biol Chem. 1999;274(18):12910‐12916.
Utsunomiya A, Ishida T, Inagaki A, et al. Clinical significance of a blood eosinophilia in adult T‐cell leukemia/lymphoma: a blood eosinophilia is a significant unfavorable prognostic factor. Leuk Res. 2007;31(7):915‐920.
Inagaki A, Ishida T, Ishii T, et al. Clinical significance of serum Th1‐, Th2‐ and regulatory T cells‐associated cytokines in adult T‐cell leukemia/lymphoma: high interleukin‐5 and ‐10 levels are significant unfavorable prognostic factors. Int J Cancer. 2006;118(12):3054‐3061.
Yoshie O, Fujisawa R, Nakayama T, et al. Frequent expression of CCR4 in adult T‐cell leukemia and human T‐cell leukemia virus type 1‐transformed T cells. Blood. 2002;99(5):1505‐1511.
Pulitzer MP, Horna P, Almeida J. Sézary syndrome and mycosis fungoides: an overview, including the role of immunophenotyping. Cytometry B Clin Cytom. 2021;100(2):132‐138.
Campbell JJ, Clark RA, Watanabe R, Kupper TS. Sezary syndrome and mycosis fungoides arise from distinct T‐cell subsets: a biologic rationale for their distinct clinical behaviors. Blood. 2010;116(5):767‐771.
Scala E, Russo G, Cadoni S, et al. Skewed expression of activation, differentiation and homing‐related antigens in circulating cells from patients with cutaneous T cell lymphoma associated with CD7‐ T helper lymphocytes expansion. J Invest Dermatol. 1999;113(4):622‐627.
Miyashiro D, Souza B d CE, Torrealba MP, Manfrere KCG, Sato MN, Sanches JA. The role of tumor microenvironment in the pathogenesis of Sézary syndrome. Int J Mol Sci. 2022;23(2):936.
Kobayashi T, Iijima K, Matsumoto K, Lama JK, Kita H. Lung‐resident CD69+ST2+ TH2 cells mediate long‐term type 2 memory to inhaled antigen in mice. J Allergy Clin Immunol. 2023;152(1):167‐181.e6.
Ulrich BJ, Kharwadkar R, Chu M, et al. Allergic airway recall responses require IL‐9 from resident memory CD4+ T cells. Sci Immunol. 2022;7(69):eabg9296.
Sethi GS, Gracias D, Croft M. Contribution of circulatory cells to asthma exacerbations and lung tissue‐resident CD4 T cell memory. Front Immunol. 2022;13:951361.
Herrera‐De La Mata S, Ramírez‐Suástegui C, Mistry H, et al. Cytotoxic CD4+ tissue‐resident memory T cells are associated with asthma severity. Fortschr Med. 2023;4(12):875‐897.e8.
Wambre E, Bajzik V, DeLong JH, et al. A phenotypically and functionally distinct human TH2 cell subpopulation is associated with allergic disorders. Sci Transl Med. 2017;9(401):eaam9171.
Tian Y, Babor M, Lane J, et al. Unique phenotypes and clonal expansions of human CD4 effector memory T cells re‐expressing CD45RA. Nat Commun. 2017;8(1):1473.
Cano‐Gamez E, Soskic B, Roumeliotis TI, et al. Single‐cell transcriptomics identifies an effectorness gradient shaping the response of CD4+ T cells to cytokines. Nat Commun. 2020;11(1):1801.
Hammond T, Lee S, Watson MW, et al. Toll‐like receptor (TLR) expression on CD4+ and CD8+ T‐cells in patients chronically infected with hepatitis C virus. Cell Immunol. 2010;264(2):150‐155.
Burel JG, Pomaznoy M, Lindestam Arlehamn CS, et al. Circulating T cell‐monocyte complexes are markers of immune perturbations. elife. 2019;8:e46045.
Okada SS, de Oliveira EM, de Araújo TH, et al. Myeloperoxidase in human peripheral blood lymphocytes: production and subcellular localization. Cell Immunol. 2016;300:18‐25.
Subbannayya Y, Haug M, Pinto SM, et al. The proteomic landscape of resting and activated CD4+ T cells reveal insights into cell differentiation and function. Int J Mol Sci. 2020;22(1):275.
Manley HR, Keightley MC, Lieschke GJ. The neutrophil nucleus: an important influence on neutrophil migration and function. Front Immunol. 2018;9:2867.