Contribution of hypothalamic orexin (hypocretin) circuits to pathologies of motivation.
addiction
dopamine
eating
mesolimbic system
nucleus accumbens
orexin hypocretin
orexin reserve
paraventricular nucleus
ventral tegmental area
Journal
British journal of pharmacology
ISSN: 1476-5381
Titre abrégé: Br J Pharmacol
Pays: England
ID NLM: 7502536
Informations de publication
Date de publication:
24 Sep 2024
24 Sep 2024
Historique:
revised:
17
06
2024
received:
30
07
2023
accepted:
28
06
2024
medline:
25
9
2024
pubmed:
25
9
2024
entrez:
24
9
2024
Statut:
aheadofprint
Résumé
The orexin (also known as hypocretin) system, consisting of neuropeptides orexin-A and orexin-B, was discovered over 25 years ago and was immediately identified as a central regulator of sleep and wakefulness. These peptides interact with two G-protein coupled receptors, orexin 1 (OX
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Health and Medical Research Council of Australia
ID : GNT1125478
Organisme : National Health and Medical Research Council of Australia
ID : GNT1165679
Organisme : NSERC Discovery
ID : DG-343012/DAS-04060
Organisme : Canada Research Chair
ID : 950-232211
Organisme : Rutgers Optimizes Innovation-Health Advance
Organisme : New Jersey Health Foundation
ID : PC144-23
Organisme : New Jersey Health Foundation
ID : PC98-22
Organisme : Mathison Centre for Research and Education Postdoctoral Fellowship
Organisme : NIDA NIH HHS
ID : R00DA 045765
Pays : United States
Organisme : NIDA NIH HHS
ID : R01DA061303
Pays : United States
Organisme : NIEHS NIH HHS
ID : R21ES 035848
Pays : United States
Organisme : National Heart Brain and Lung Institute
ID : U01HL 150852
Organisme : Hunter Medical Research Institute
Informations de copyright
© 2024 The Author(s). British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.
Références
Ahmed, S. H., Lutjens, R., van der Stap, L. D., Lekic, D., Romano‐Spica, V., Morales, M., Koob, G. F., Repunte‐Canonigo, V., & Sanna, P. P. (2005). Gene expression evidence for remodeling of lateral hypothalamic circuitry in cocaine addiction. Proceedings of the National Academy of Sciences of the United States of America, 102(32), 11533–11538. https://doi.org/10.1073/pnas.0504438102
Alcaraz‐Iborra, M., Carvajal, F., Lerma‐Cabrera, J. M., Valor, L. M., & Cubero, I. (2014). Binge‐like consumption of caloric and non‐caloric palatable substances in ad libitum‐fed C57BL/6J mice: Pharmacological and molecular evidence of orexin involvement. Behavioural Brain Research, 272, 93–99. https://doi.org/10.1016/j.bbr.2014.06.049
Alexander, S. P. H., Christopoulos, A., Davenport, A. P., Kelly, E., Mathie, A. A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Abbracchio, M. P., Abraham, G., Agoulnik, A., Alexander, W., Al‐hosaini, K., Bäck, M., Baker, J. G., Barnes, N. M., … Ye, R. D. (2023). The Concise Guide to PHARMACOLOGY 2023/24: G protein‐coupled receptors. British Journal of Pharmacology, 180, S23–S144. https://doi.org/10.1111/bph.16177
Alexander, S. P. H., Fabbro, D., Kelly, E., Mathie, A. A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Beuve, A., Brouckaert, P., Bryant, C., Burnett, J. C., Farndale, R. W., Friebe, A., Garthwaite, J., Hobbs, A. J., Jarvis, G. E., … Waldman, S. A. (2023). The Concise Guide to PHARMACOLOGY 2023/24: Catalytic receptors. British Journal of Pharmacology, 180, S241–S288. https://doi.org/10.1111/bph.16180
Alexander, S. P. H., Mathie, A. A., Peters, J. A., Veale, E. L., Striessnig, J., Kelly, E., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Aldrich, R. W., Attali, B., Baggetta, A. M., Becirovic, E., Biel, M., Bill, R. M., Caceres, A. I., Catterall, W. A., Conner, A. C., … Zhu, M. (2023). The Concise Guide to PHARMACOLOGY 2023/24: Ion channels. British Journal of Pharmacology, 180, S145–S222. https://doi.org/10.1111/bph.16178
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). https://doi.org/10.1176/appi.books.9780890425596
Anderson, R. I., Becker, H. C., Adams, B. L., Jesudason, C. D., & Rorick‐Kehn, L. M. (2014). Orexin‐1 and orexin‐2 receptor antagonists reduce ethanol self‐administration in high‐drinking rodent models. Frontiers in Neuroscience, 8, 33. https://doi.org/10.3389/fnins.2014.00033
Avena, N. M. (2010). The study of food addiction using animal models of binge eating. Appetite, 55(3), 734–737. https://doi.org/10.1016/j.appet.2010.09.010
Azevedo, E. P., Pomeranz, L., Cheng, J., Schneeberger, M., Vaughan, R., Stern, S. A., Tan, B., Doerig, K., Greengard, P., & Friedman, J. M. (2019). A role of Drd2 hippocampal neurons in context‐dependent food intake. Neuron, 102(4), p873–886.e5. https://doi.org/10.1016/j.neuron.2019.03.011
Baimel, C., Bartlett, S. E., Chiou, L.‐C., Lawrence, A. J., Muschamp, J. W., Patkar, O., Tung, L. W., & Borgland, S. L. (2015). Orexin/hypocretin role in reward: Implications for opioid and other addictions. British Journal of Pharmacology., 172(2), 334–348. https://doi.org/10.1111/bph.12639
Baimel, C., Lau, B. K., Qiao, M., & Borgland, S. L. (2017). Projection‐target‐defined effects of orexin and Dynorphin on VTA dopamine neurons. Cell Reports, 18(6), 1346–1355. https://doi.org/10.1016/j.celrep.2017.01.030
Balcita‐Pedicino, J. J., & Sesack, S. R. (2007). Orexin axons in the rat ventral tegmental area synapse infrequently onto dopamine and gamma‐aminobutyric acid neurons. The Journal of Comparative Neurology, 503(5), 668–684. https://doi.org/10.1002/cne.21420
Baldo, B. A., Daniel, R. A., Berridge, C. W., & Kelley, A. E. (2003). Overlapping distributions of orexin/hypocretin‐ and dopamine‐beta‐hydroxylase immunoreactive fibers in rat brain regions mediating arousal, motivation, and stress. The Journal of Comparative Neurology., 464(2), 220–237. https://doi.org/10.1002/cne.10783
Baldo, B. A., Gual‐Bonilla, L., Sijapati, K., Daniel, R. A., Landry, C. F., & Kelley, A. E. (2004). Activation of a subpopulation of orexin/hypocretin‐containing hypothalamic neurons by GABAA receptor‐mediated inhibition of the nucleus accumbens shell, but not by exposure to a novel environment. European Journal of Neuroscience., 19(2), 376–386. https://doi.org/10.1111/j.1460-9568.2004.03093.x
Barson, J. R., Carr, A. J., Soun, J. E., Sobhani, N. C., Rada, P., Leibowitz, S. F., & Hoebel, B. G. (2010). Opioids in the hypothalamic paraventricular nucleus stimulate ethanol intake. Alcoholism, Clinical and Experimental Research, 34(2), 214–222. https://doi.org/10.1111/j.1530-0277.2009.01084.x
Barson, J. R., Ho, H. T., & Leibowitz, S. F. (2015). Anterior thalamic paraventricular nucleus is involved in intermittent access ethanol drinking: Role of orexin receptor 2. Addiction Biology, 20(3), 469–481. https://doi.org/10.1111/adb.12139
Bergamini, G., Durkin, S., & Steiner, M. A. (2024). Selective orexin 1 receptor antagonism does not affect effort‐based responding for sucrose reward in rats. Journal of Psychopharmacology, 38(3), 305–308. https://doi.org/10.1177/02698811241229523
Berridge, K. C. (2009). ‘Liking’ and ‘wanting’ food rewards: Brain substrates and roles in eating disorders. Physiology & Behavior, 97(5), 537–550. https://doi.org/10.1016/j.physbeh.2009.02.044
Bertran‐Gonzalez, J., Bosch, C., Maroteaux, M., Matamales, M., Hervé, D., Valjent, E., & Girault, J. A. (2008). Opposing patterns of signaling activation in dopamine D1 and D2 receptor‐expressing striatal neurons in response to cocaine and haloperidol. The Journal of Neuroscience, 28(22), 5671–5685. https://doi.org/10.1523/JNEUROSCI.1039-08.2008
Bonnavion, P., Jackson, A. C., Carter, M. E., & de Lecea, L. (2015). Antagonistic interplay between hypocretin and leptin in the lateral hypothalamus regulates stress responses. Nature Communications, 6(1), 6266. https://doi.org/10.1038/ncomms7266
Borgland, S. L., Chang, S. J., Bowers, M. S., Thompson, J. L., Vittoz, N., Floresco, S. B., Chou, J., Chen, B. T., & Bonci, A. (2009). Orexin a/hypocretin‐1 selectively promotes motivation for positive reinforcers. The Journal of Neuroscience, 29(36), 11215–11225. https://doi.org/10.1523/JNEUROSCI.6096-08.2009
Borgland, S. L., Taha, S. A., Sarti, F., Fields, H. L., & Bonci, A. (2006). Orexin a in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. Neuron, 49(4), 589–601. https://doi.org/10.1016/j.neuron.2006.01.016
Boutrel, B., Kenny, P. J., Specio, S. E., Martin‐Fardon, R., Markou, A., Koob, G. F., & de Lecea, L. (2005). Role for hypocretin in mediating stress‐induced reinstatement of cocaine‐seeking behavior. National Academy of Sciences of the United States of America, 102(52), 19168–19173. https://doi.org/10.1073/pnas.0507480102
Broberger, C., De Lecea, L., Sutcliffe, J. G., & Hökfelt, T. (1998). Hypocretin/orexin‐ and melanin‐concentrating hormone‐expressing cells form distinct populations in the rodent lateral hypothalamus: Relationship to the neuropeptide Y and agouti gene‐related protein systems. The Journal of Comparative Neurology, 402(4), 460–474. https://doi.org/10.1002/(SICI)1096-9861(19981228)402:4<460::AID-CNE3>3.0.CO;2-S
Brown, R. M., Dayas, C. V., James, M. H., & Smith, R. J. (2022). New directions in modelling dysregulated reward seeking for food and drugs. Neuroscience and Biobehavioral Reviews., 132, 1037–1048. https://doi.org/10.1016/j.neubiorev.2021.10.043
Brown, R. M., & James, M. H. (2023). Binge eating, overeating and food addiction: Approaches for examining food overconsumption in laboratory rodents. Progress in Neuro‐Psychopharmacology & Biological Psychiatry, 123, 110717. https://doi.org/10.1016/j.pnpbp.2023.110717
Brown, R. M., Khoo, S. Y.‐S., & Lawrence, A. J. (2013). Central orexin (hypocretin) 2 receptor antagonism reduces ethanol self‐administration, but not cue‐conditioned ethanol‐seeking, in ethanol‐preferring rats. International Journal of Neuropsychopharmacology., 16(9), 2067–2079. https://doi.org/10.1017/S1461145713000333
Brown, R. M., Kim, A. K., Khoo, S. Y.‐S., Kim, J. H., Jupp, B., & Lawrence, A. J. (2016). Orexin‐1 receptor signalling in the prelimbic cortex and ventral tegmental area regulates cue‐induced reinstatement of ethanol‐seeking in iP rats. Addiction Biology., 21(3), 603–612. https://doi.org/10.1111/adb.12251
Brundin, L., Björkqvist, M., Petersén, Å., & Träskman‐Bendz, L. (2007). Reduced orexin levels in the cerebrospinal fluid of suicidal patients with major depressive disorder. European Neuropsychopharmacology, 17(9), 573–579. https://doi.org/10.1016/j.euroneuro.2007.01.005
Brundin, L., Björkqvist, M., Träskman‐Bendz, L., & Petersén, A. (2009). Increased orexin levels in the cerebrospinal fluid the first year after a suicide attempt. Journal of Affective Disorders, 113(1–2), 179–182. https://doi.org/10.1016/j.jad.2008.04.011
Burdakov, D., Gerasimenko, O., & Verkhratsky, A. (2005). Physiological changes in glucose differentially modulate the excitability of hypothalamic melanin‐concentrating hormone and orexin neurons in situ. The Journal of Neuroscience, 25(9), 2429–2433. https://doi.org/10.1523/JNEUROSCI.4925-04.2005
Campbell, E. J., Mitchell, C. S., Adams, C. D., Yeoh, J. W., Hodgson, D. M., Graham, B. A., & Dayas, C. V. (2017). Chemogenetic activation of the lateral hypothalamus reverses early life stress‐induced deficits in motivational drive. European Journal of Neuroscience., 46(7), 2285–2296. https://doi.org/10.1111/ejn.13674
Castro, D. C., & Berridge, K. C. (2017). Opioid and orexin hedonic hotspots in rat orbitofrontal cortex and insula. Proceedings of the National Academy of Sciences of the United States of America, 114(43), E9125–e34. https://doi.org/10.1073/pnas.1705753114
Castro, D. C., Terry, R. A., & Berridge, K. C. (2016). Orexin in rostral hotspot of nucleus Accumbens enhances sucrose ‘Liking’ and intake but scopolamine in caudal Shell shifts ‘Liking’ toward ‘Disgust’ and ‘Fear’. Neuropsychopharmacology, 41(8), 2101–2111. https://doi.org/10.1038/npp.2016.10
Chang, H., Saito, T., Ohiwa, N., Tateoka, M., Deocaris, C. C., Fujikawa, T., & Soya, H. (2007). Inhibitory effects of an orexin‐2 receptor antagonist on orexin A‐ and stress‐induced ACTH responses in conscious rats. Neuroscience Research., 57(3), 462–466. https://doi.org/10.1016/j.neures.2006.11.009
Choi, D. L., Davis, J. F., Fitzgerald, M. E., & Benoit, S. C. (2010). The role of orexin‐a in food motivation, reward‐based feeding behavior and food‐induced neuronal activation in rats. Neuroscience, 167(1), 11–20. https://doi.org/10.1016/j.neuroscience.2010.02.002
Chou, T. C., Lee, C. E., Lu, J., Elmquist, J. K., Hara, J., Willie, J. T., Beuckmann, C. T., Chemelli, R. M., Sakurai, T., Yanagisawa, M., Saper, C. B., & Scammell, T. E. (2001). Orexin (hypocretin) neurons contain dynorphin. The journal of neuroscience : The official journal of the society for. Neuroscience, 21(19), RC168. https://doi.org/10.1523/JNEUROSCI.21-19-j0003.2001
Clegg, D. J., Air, E. L., Woods, S. C., & Seeley, R. J. (2002). Eating elicited by orexin‐a, but not melanin‐concentrating hormone, is opioid mediated. Endocrinology, 143(8), 2995–3000. https://doi.org/10.1210/endo.143.8.8977
Collier, A. D., Halkina, V., Min, S. S., Roberts, M. Y., Campbell, S. D., Camidge, K., & Leibowitz, S. F. (2019). Embryonic ethanol exposure affects the early development, migration, and location of Hypocretin/orexin neurons in zebrafish. Alcoholism, Clinical and Experimental Research., 43(8), 1702–1713. https://doi.org/10.1111/acer.14126
Collier, A. D., Min, S. S., Campbell, S. D., Roberts, M. Y., Camidge, K., & Leibowitz, S. F. (2020). Maternal ethanol consumption before paternal fertilization: Stimulation of hypocretin neurogenesis and ethanol intake in zebrafish offspring. Progress in Neuro‐Psychopharmacology & Biological Psychiatry, 96, 109728. https://doi.org/10.1016/j.pnpbp.2019.109728
Collier, A. D., Yasmin, N., Chang, G. Q., Karatayev, O., Khalizova, N., Fam, M., Abdulai, A. R., Yu, B., & Leibowitz, S. F. (2022). Embryonic ethanol exposure induces ectopic Hcrt and MCH neurons outside hypothalamus in rats and zebrafish: Role in ethanol‐induced behavioural disturbances. Addiction Biology, 27(6), e13238. https://doi.org/10.1111/adb.13238
Collier, A., Yasmin, N., Khalizova, N., Campbell, S., Onoichenco, A., Fam, M., Albeg, A. S., & Leibowitz, S. F. (2021). Sexually dimorphic and asymmetric effects of embryonic ethanol exposure on hypocretin/orexin neurons as related to behavioral changes in zebrafish. Scientific Reports, 11(1), 16078. https://doi.org/10.1038/s41598-021-95707-y
Davidson, T. L., Jones, S., Roy, M., & Stevenson, R. J. (2019). The cognitive control of eating and body weight: It's more than what you “think”. Frontiers in Psychology, 10, 62. https://doi.org/10.3389/fpsyg.2019.00062
Dayas, C. V., McGranahan, T. M., Martin‐Fardon, R., & Weiss, F. (2008). Stimuli linked to ethanol availability activate hypothalamic CART and orexin neurons in a reinstatement model of relapse. Biological Psychiatry, 63(2), 152–157. https://doi.org/10.1016/j.biopsych.2007.02.002
de Lecea, L., Kilduff, T. S., Peyron, C., Gao, X.‐B., Foye, P. E., Danielson, P. E., Fukuhara, C., Battenberg, E. L. F., Gautvik, V. T., Bartlett, F. S., Frankel, W. N., van den Pol, A. N., Bloom, F. E., Gautvik, K. M., & Sutcliffe, J. G. (1998). The hypocretins: Hypothalamus‐specific peptides with neuroexcitatory activity. Proceedings of the National Academy of Sciences, 95(1), 322–327. https://doi.org/10.1073/pnas.95.1.322
Dimitrova, A., Fronczek, R., Van der Ploeg, J., Scammell, T., Gautam, S., Pascual‐Leone, A., & Lammers, G. J. (2011). Reward‐seeking behavior in human narcolepsy. Journal of Clinical Sleep Medicine., 7(3), 293–300. https://doi.org/10.5664/JCSM.1076
Dube, M. G., Kalra, S. P., & Kalra, P. S. (1999). Food intake elicited by central administration of orexins/hypocretins: Identification of hypothalamic sites of action. Brain Research, 842(2), 473–477. https://doi.org/10.1016/S0006-8993(99)01824-7
Duffet, L., Kosar, S., Panniello, M., Viberti, B., Bracey, E., Zych, A. D., Radoux‐Mergault, A., Zhou, X., Dernic, J., Ravotto, L., Tsai, Y. C., Figueiredo, M., Tyagarajan, S. K., Weber, B., Stoeber, M., Gogolla, N., Schmidt, M. H., Adamantidis, A. R., Fellin, T., … Patriarchi, T. (2022). A genetically encoded sensor for in vivo imaging of orexin neuropeptides. Nature Methods, 19(2), 231–241. https://doi.org/10.1038/s41592-021-01390-2
Duffet, L., Tatarskiy, P. V., Harada, M., Williams, E. T., Hartrampf, N., & Patriarchi, T. (2022). A photocaged orexin‐B for spatiotemporally precise control of orexin signaling. Cell. Chemistry & Biology, 29(12), 1729–38 e8. https://doi.org/10.1016/j.chembiol.2022.11.007
Elias, C. F., Saper, C. B., Maratos‐Flier, E., Tritos, N. A., Lee, C., Kelly, J., Tatro, J. B., Hoffman, G. E., Ollmann, M. M., Barsh, G. S., Sakurai, T., Yanagisawa, M., & Elmquist, J. K. (1998). Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. Journal of Comparative Neurology., 402(4), 442–459. https://doi.org/10.1002/(SICI)1096-9861(19981228)402:4<442::AID-CNE2>3.0.CO;2-R
Espana, R. A., Melchior, J. R., Roberts, D. C., & Jones, S. R. (2011). Hypocretin 1/orexin a in the ventral tegmental area enhances dopamine responses to cocaine and promotes cocaine self‐administration. Psychopharmacology, 214(2), 415–426. https://doi.org/10.1007/s00213-010-2048-8
Espana, R. A., Oleson, E. B., Locke, J. L., Brookshire, B. R., Roberts, D. C., & Jones, S. R. (2010). The hypocretin‐orexin system regulates cocaine self‐administration via actions on the mesolimbic dopamine system. The European Journal of Neuroscience, 31(2), 336–348. https://doi.org/10.1111/j.1460-9568.2009.07065.x
Fadel, J., & Deutch, A. Y. (2002). Anatomical substrates of orexin‐dopamine interactions: Lateral hypothalamic projections to the ventral tegmental area. Neuroscience, 111(2), 379–387. https://doi.org/10.1016/S0306-4522(02)00017-9
Ferrari, L. L., Park, D., Zhu, L., Palmer, M. R., Broadhurst, R. Y., & Arrigoni, E. (2018). Regulation of lateral hypothalamic orexin activity by local GABAergic neurons. The Journal of Neuroscience, 38(6), 1588–1599. https://doi.org/10.1523/JNEUROSCI.1925-17.2017
Finlayson, G. (2017). Food addiction and obesity: Unnecessary medicalization of hedonic overeating. Nature Reviews. Endocrinology, 13(8), 493–498. https://doi.org/10.1038/nrendo.2017.61
Fletcher, P. C., & Kenny, P. J. (2018). Food addiction: A valid concept? Neuropsychopharmacology, 43(13), 2506–2513. https://doi.org/10.1038/s41386-018-0203-9
Fortuyn, H. A., Swinkels, S., Buitelaar, J., Renier, W. O., Furer, J. W., Rijnders, C. A., Hodiamont, P. P., & Overeem, S. (2008). High prevalence of eating disorders in narcolepsy with cataplexy: A case‐control study. Sleep, 31(3), 335–341. https://doi.org/10.1093/sleep/31.3.335
Fragale, J. E., James, M. H., & Aston‐Jones, G. (2021). Intermittent self‐administration of fentanyl induces a multifaceted addiction state associated with persistent changes in the orexin system. Addiction Biology, 26(3), e12946. https://doi.org/10.1111/adb.12946
Fragale, J. E., James, M. H., Avila, J. A., Spaeth, A. M., Aurora, R. N., Langleben, D., & Aston‐Jones, G. (2021). The Insomnia‐Addiction Positive Feedback Loop: Role of the Orexin System. The Orexin System. Basic Science and Role in Sleep Pathology, 117–127. https://doi.org/10.1159/000514965
Freeman, L. R., Bentzley, B. S., James, M. H., & Aston‐Jones, G. (2021). Sex differences in demand for highly palatable foods: Role of the orexin system. The International Journal of Neuropsychopharmacology, 24(1), 54–63. https://doi.org/10.1093/ijnp/pyaa040
Funk, C. K., O'Dell, L. E., Crawford, E. F., & Koob, G. F. (2006). Corticotropin‐releasing factor within the central nucleus of the amygdala mediates enhanced ethanol self‐administration in withdrawn, ethanol‐dependent rats. The Journal of Neuroscience, 26(44), 11324–11332. https://doi.org/10.1523/JNEUROSCI.3096-06.2006
Galmiche, M., Dechelotte, P., Lambert, G., & Tavolacci, M. P. (2019). Prevalence of eating disorders over the 2000‐2018 period: A systematic literature review. The American Journal of Clinical Nutrition, 109(5), 1402–1413. https://doi.org/10.1093/ajcn/nqy342
Gearhardt, A. N., Boswell, R. G., & White, M. A. (2014). The association of “food addiction” with disordered eating and body mass index. Eating Behaviors, 15(3), 427–433. https://doi.org/10.1016/j.eatbeh.2014.05.001
Gearhardt, A. N., & Hebebrand, J. (2021). The concept of “food addiction” helps inform the understanding of overeating and obesity: Debate consensus. The American Journal of Clinical Nutrition, 113(2), 274–276. https://doi.org/10.1093/ajcn/nqaa345
George, M. S., Anton, R. F., Bloomer, C., Teneback, C., Drobes, D. J., Lorberbaum, J. P., Nahas, Z., & Vincent, D. J. (2001). Activation of prefrontal cortex and anterior thalamus in alcoholic subjects on exposure to alcohol‐specific cues. Archives of General Psychiatry, 58(4), 345–352. https://doi.org/10.1001/archpsyc.58.4.345
Georgescu, D., Zachariou, V., Barrot, M., Mieda, M., Willie, J. T., Eisch, A. J., Yanagisawa, M., Nestler, E. J., & DiLeone, R. J. (2003). Involvement of the lateral hypothalamic peptide orexin in morphine dependence and withdrawal. Journal of Neuroscience., 23(8), 3106–3111. https://doi.org/10.1523/JNEUROSCI.23-08-03106.2003
Giannotti, G., Mottarlini, F., Heinsbroek, J. A., Mandel, M. R., James, M. H., & Peters, J. (2022). Oxytocin and orexin systems bidirectionally regulate the ability of opioid cues to bias reward seeking. Translational Psychiatry, 12(1). https://doi.org/10.1038/s41398-022-02161-z
Giardino, W. J., & de Lecea, L. (2014). Hypocretin (orexin) neuromodulation of stress and reward pathways. Current Opinion in Neurobiology, 29, 103–108. https://doi.org/10.1016/j.conb.2014.07.006
Giardino, W. J., Eban‐Rothschild, A., Christoffel, D. J., Li, S.‐B., Malenka, R. C., & de Lecea, L. (2018). Parallel circuits from the bed nuclei of stria terminalis to the lateral hypothalamus drive opposing emotional states. Nature Neuroscience., 21(8), 1084–1095. https://doi.org/10.1038/s41593-018-0198-x
González, J. A., Iordanidou, P., Strom, M., Adamantidis, A., & Burdakov, D. (2016). Awake dynamics and brain‐wide direct inputs of hypothalamic MCH and orexin networks. Nature Communications, 7, 11395. https://doi.org/10.1038/ncomms11395
Grafe, L. A., & Bhatnagar, S. (2018). Orexins and stress. Frontiers in Neuroendocrinology, 51, 132–145. https://doi.org/10.1016/j.yfrne.2018.06.003
Grafe, L. A., Eacret, D., Luz, S., Gotter, A. L., Renger, J. J., Winrow, C. J., & Bhatnagar, S. (2017). Orexin 2 receptor regulation of the hypothalamic‐pituitary‐adrenal (HPA) response to acute and repeated stress. Neuroscience, 348, 313–323. https://doi.org/10.1016/j.neuroscience.2017.02.038
Grill, H. J., & Hayes, M. R. (2012). Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance. Cell Metabolism, 16(3), 296–309. https://doi.org/10.1016/j.cmet.2012.06.015
Gyawali, U., & James, M. H. (2023). Sleep disturbance in substance use disorders: The orexin (hypocretin) system as an emerging pharmacological target. Neuropsychopharmacology, 48(1), 228–229. https://doi.org/10.1038/s41386-022-01404-3
Hara, J., Beuckmann, C. T., Nambu, T., Willie, J. T., Chemelli, R. M., Sinton, C. M., Sugiyama, F., Yagami, K. I., Goto, K., Yanagisawa, M., & Sakurai, T. (2001). Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron, 30(2), 345–354. https://doi.org/10.1016/S0896-6273(01)00293-8
Harris, G. C., Wimmer, M., & Aston‐Jones, G. (2005). A role for lateral hypothalamic orexin neurons in reward seeking. Nature, 437(7058), 556–559. https://doi.org/10.1038/nature04071
Haynes, A. C., Chapman, H., Taylor, C., Moore, G. B., Cawthorne, M. A., Tadayyon, M., Clapham, J. C., & Arch, J. R. (2002). Anorectic, thermogenic and anti‐obesity activity of a selective orexin‐1 receptor antagonist in Ob/Ob mice. Regulatory Peptides, 104(1–3), 153–159. https://doi.org/10.1016/S0167-0115(01)00358-5
Haynes, A. C., Jackson, B., Chapman, H., Tadayyon, M., Johns, A., Porter, R. A., & Arch, J. R. S. (2000). A selective orexin‐1 receptor antagonist reduces food consumption in male and female rats. Regulatory Peptides., 96(1–2), 45–51. https://doi.org/10.1016/S0167-0115(00)00199-3
Heifetz, A., Barker, O., Morris, G. B., Law, R. J., Slack, M., & Biggin, P. C. (2013). Toward an understanding of agonist binding to human Orexin‐1 and Orexin‐2 receptors with G‐protein‐coupled receptor modeling and site‐directed mutagenesis. Biochemistry, 52(46), 8246–8260. https://doi.org/10.1021/bi401119m
Herring, W. J., Connor, K. M., Ivgy‐May, N., Snyder, E., Liu, K., Snavely, D. B., Krystal, A. D., Walsh, J. K., Benca, R. M., Rosenberg, R., Sangal, R. B., Budd, K., Hutzelmann, J., Leibensperger, H., Froman, S., Lines, C., Roth, T., & Michelson, D. (2016). Suvorexant in patients with insomnia: Results from two 3‐month randomized controlled clinical trials. Biological Psychiatry, 79(2), 136–148. https://doi.org/10.1016/j.biopsych.2014.10.003
Herring, W. J., Snyder, E., Budd, K., Hutzelmann, J., Snavely, D., Liu, K., Lines, C., Roth, T., & Michelson, D. (2012). Orexin receptor antagonism for treatment of insomnia. Neurology, 79(23), 2265–2274. https://doi.org/10.1212/WNL.0b013e31827688ee
Hill, J. W. (2012). PVN pathways controlling energy homeostasis. Indian Journal of Endocrinology and Metabolism, 16(Suppl 3), S627–S636. https://doi.org/10.4103/2230-8210.105581
Hoek, H. W., & van Hoeken, D. (2003). Review of the prevalence and incidence of eating disorders. The International Journal of Eating Disorders, 34(4), 383–396. https://doi.org/10.1002/eat.10222
Hollander, J. A., Lu, Q., Cameron, M. D., Kamenecka, T. M., & Kenny, P. J. (2008). Insular hypocretin transmission regulates nicotine reward. National Academy of Sciences of the United States of America, 105(49), 19480–19485. https://doi.org/10.1073/pnas.0808023105
Hopf, F. W. (2020). Recent perspectives on orexin/hypocretin promotion of addiction‐related behaviors. Neuropharmacology, 168, 108013. https://doi.org/10.1016/j.neuropharm.2020.108013
Horvath, T. L., & Gao, X. B. (2005). Input organization and plasticity of hypocretin neurons: Possible clues to obesity's association with insomnia. Cell Metabolism, 1(4), 279–286. https://doi.org/10.1016/j.cmet.2005.03.003
Hsu, T. M., Hahn, J. D., Konanur, V. R., Noble, E. E., Suarez, A. N., Thai, J., Nakamoto, E. M., & Kanoski, S. E. (2015). Hippocampus ghrelin signaling mediates appetite through lateral hypothalamic orexin pathways. eLife, 4, e11190. https://doi.org/10.7554/eLife.11190
Huhn, A. S., Finan, P. H., Gamaldo, C. E., Hammond, A. S., Umbricht, A., Bergeria, C. L., Strain, E. C., & Dunn, K. E. (2022). Suvorexant ameliorated sleep disturbance, opioid withdrawal, and craving during a buprenorphine taper. Science Translational Medicine., 14(650), eabn8238. https://doi.org/10.1126/scitranslmed.abn8238
Jamali, S., Zarrabian, S., & Haghparast, A. (2021). Similar role of mPFC orexin‐1 receptors in the acquisition and expression of morphine‐ and food‐induced conditioned place preference in male rats. Neuropharmacology, 198, 108764. https://doi.org/10.1016/j.neuropharm.2021.108764
James, M. H., & Aston‐Jones, G. (2020). Introduction to the Special Issue: “Making orexin‐based therapies for addiction a reality: What are the steps from here?”. Brain Research, 1731, 146665. https://doi.org/10.1016/j.brainres.2020.146665
James, M. H., & Aston‐Jones, G. (2022). Orexin reserve: A mechanistic framework for the role of orexins (Hypocretins) in addiction. Biological Psychiatry, 92(11), 836–844. https://doi.org/10.1016/j.biopsych.2022.06.027
James, M. H., Campbell, E. J., Walker, F. R., Smith, D. W., Richardson, H. N., Hodgson, D. M., & Dayas, C. V. (2014). Exercise reverses the effects of early life stress on orexin cell reactivity in male but not female rats. Frontiers in Behavioral Neuroscience, 8, 244. https://doi.org/10.3389/fnbeh.2014.00244
James, M. H., Charnley, J. L., Levi, E. M., Jones, E., Yeoh, J. W., Smith, D. W., & Dayas, C. V. (2011). Orexin‐1 receptor signalling within the ventral tegmental area, but not the paraventricular thalamus, is critical to regulating cue‐induced reinstatement of cocaine‐seeking. The International Journal of Neuropsychopharmacology/Official Scientific Journal of the Collegium Internationale Neuropsychopharmacologicum., 14(5), 684–690. https://doi.org/10.1017/S1461145711000423
James, M. H., Fragale, J. E., Aurora, R. N., Cooperman, N. A., Langleben, D. D., & Aston‐Jones, G. (2020). Repurposing the dual orexin receptor antagonist suvorexant for the treatment of opioid use disorder: why sleep on this any longer? Neuropsychopharmacology, 45(5), 717–719. https://doi.org/10.1038/s41386-020-0619-x
James, M. H., Fragale, J. E., O’Connor, S. L., Zimmer, B. A., & Aston‐Jones, G. (2021). The orexin (hypocretin) neuropeptide system is a target for novel therapeutics to treat cocaine use disorder with alcohol coabuse. Neuropharmacology, 183, 108359. https://doi.org/10.1016/j.neuropharm.2020.108359
James, M. H., Stopper, C. M., Zimmer, B. A., Koll, N. E., Bowrey, H. E., & Aston‐Jones, G. (2019). Increased number and activity of a lateral subpopulation of hypothalamic orexin/Hypocretin neurons underlies the expression of an addicted state in rats. Biological Psychiatry, 85(11), 925–935. https://doi.org/10.1016/j.biopsych.2018.07.022
Jennings, J. H., Rizzi, G., Stamatakis, A. M., Ung, R. L., & Stuber, G. D. (2013). The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding. Science, 341(6153), 1517–1521. https://doi.org/10.1126/science.1241812
Johnson, P. L., Truitt, W., Fitz, S. D., Minick, P. E., Dietrich, A., Sanghani, S., Träskman‐Bendz, L., Goddard, A. W., Brundin, L., & Shekhar, A. (2010). A key role for orexin in panic anxiety. Nature Medicine, 16(1), 111–115. https://doi.org/10.1038/nm.2075
Jupp, B., Krstew, E., Dezsi, G., & Lawrence, A. J. (2011). Discrete cue‐conditioned alcohol‐seeking after protracted abstinence: Pattern of neural activation and involvement of orexin₁ receptors. British Journal of Pharmacology, 162(4), 880–889. https://doi.org/10.1111/j.1476-5381.2010.01088.x
Kakizaki, M., Tsuneoka, Y., Takase, K., Kim, S. J., Choi, J., Ikkyu, A., Abe, M., Sakimura, K., Yanagisawa, M., & Funato, H. (2019). Differential roles of each orexin receptor signaling in obesity. iScience., 20, 1–13. https://doi.org/10.1016/j.isci.2019.09.003
Kanoski, S. E., & Grill, H. J. (2017). Hippocampus contributions to food intake control: Mnemonic, neuroanatomical, and endocrine mechanisms. Biological Psychiatry, 81(9), 748–756. https://doi.org/10.1016/j.biopsych.2015.09.011
Karnani, M. M., Apergis‐Schoute, J., Adamantidis, A., Jensen, L. T., de Lecea, L., Fugger, L., & Burdakov, D. (2011). Activation of central orexin/hypocretin neurons by dietary amino acids. Neuron, 72(4), 616–629. https://doi.org/10.1016/j.neuron.2011.08.027
Kastman, H. E., Blasiak, A., Walker, L., Siwiec, M., Krstew, E. V., Gundlach, A. L., & Lawrence, A. J. (2016). Nucleus incertus Orexin2 receptors mediate alcohol seeking in rats. Neuropharmacology, 110, 82–91. https://doi.org/10.1016/j.neuropharm.2016.07.006
Kay, K., Parise, E. M., Lilly, N., & Williams, D. L. (2014). Hindbrain orexin 1 receptors influence palatable food intake, operant responding for food, and food‐conditioned place preference in rats. Psychopharmacology, 231(2), 419–427. https://doi.org/10.1007/s00213-013-3248-9
Kelley, A. E. (1999). Neural integrative activities of nucleus accumbens subregions in relation to learning and motivation. Psychobiology, 27(2), 198–213. https://doi.org/10.3758/BF03332114
Kelley, A. E., Baldo, B. A., & Pratt, W. E. (2005). A proposed hypothalamic‐thalamic‐striatal axis for the integration of energy balance, arousal, and food reward. The Journal of Comparative Neurology, 493(1), 72–85. https://doi.org/10.1002/cne.20769
Kirouac, G. J., & Ganguly, P. K. (1995). Topographical organization in the nucleus accumbens of afferents from the basolateral amygdala and efferents to the lateral hypothalamus. Neuroscience, 67(3), 625–630. https://doi.org/10.1016/0306-4522(95)00013-9
Korotkova, T. M., Sergeeva, O. A., Eriksson, K. S., Haas, H. L., & Brown, R. E. (2003). Excitation of ventral tegmental area dopaminergic and nondopaminergic neurons by orexins/hypocretins. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience., 23(1), 7–11. https://doi.org/10.1523/JNEUROSCI.23-01-00007.2003
Kotz, C. M. (2006). Integration of feeding and spontaneous physical activity: Role for orexin. Physiology & Behavior., 88(3), 294–301. https://doi.org/10.1016/j.physbeh.2006.05.031
Kotz, C. M., Teske, J. A., & Billington, C. J. (2008). Neuroregulation of nonexercise activity thermogenesis and obesity resistance. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 294(3), R699–R710. https://doi.org/10.1152/ajpregu.00095.2007
Kukkonen, J. P., & Leonard, C. S. (2014). Orexin/hypocretin receptor signalling cascades. British Journal of Pharmacology, 171(2), 314–331. https://doi.org/10.1111/bph.12324
Lee, E. Y., & Lee, H. S. (2016). Dual projections of single orexin‐ or CART‐immunoreactive, lateral hypothalamic neurons to the paraventricular thalamic nucleus and nucleus accumbens shell in the rat: Light microscopic study. Brain Research, 1634, 104–118. https://doi.org/10.1016/j.brainres.2015.12.062
Lei, K., Kwok, C., Darevsky, D., Wegner, S. A., Nakayama, L., Anderson, L., Ghotra, S., Fouad, M., & Hopf, F. W. (2019). Nucleus accumbens shell orexin‐1 receptors are critical mediators of binge intake in excessive‐drinking individuals. Frontiers in Neuroscience, 13, 421773. https://doi.org/10.3389/fnins.2019.00088
Lei, K., Wegner, S. A., & Hopf, F. W. (2016). Nucleus accumbens shell and mPFC but not insula orexin‐1 receptors promote excessive alcohol drinking. Frontiers in Neuroscience, 10, 209147. https://doi.org/10.3389/fnins.2016.00400
Li, Y., Gao, X.‐B., Sakurai, T., & van den Pol, A. N. (2002). Hypocretin/orexin excites Hypocretin neurons via a local glutamate neuron—A potential mechanism for orchestrating the hypothalamic arousal system. Neuron, 36(6), 1169–1181. https://doi.org/10.1016/S0896-6273(02)01132-7
Liu, L., Wang, Q., Liu, A., Lan, X., Huang, Y., Zhao, Z., Jie, H., Chen, J., & Zhao, Y. (2020). Physiological implications of orexins/Hypocretins on energy metabolism and adipose tissue development. ACS Omega, 5(1), 547–555. https://doi.org/10.1021/acsomega.9b03106
Lu, G.‐L., Lee, C.‐H., & Chiou, L.‐C. (2016). Orexin a induces bidirectional modulation of synaptic plasticity: Inhibiting long‐term potentiation and preventing depotentiation. Neuropharmacology, 107, 168–180. https://doi.org/10.1016/j.neuropharm.2016.03.005
Lutter, M., Krishnan, V., Russo, S. J., Jung, S., McClung, C. A., & Nestler, E. J. (2008). Orexin signaling mediates the antidepressant‐like effect of calorie restriction. The Journal of Neuroscience, 28(12), 3071–3075. https://doi.org/10.1523/JNEUROSCI.5584-07.2008
Mahler, S. V., & Aston‐Jones, G. S. (2012). Fos activation of selective afferents to ventral tegmental area during cue‐induced reinstatement of cocaine seeking in rats. The Journal of Neuroscience, 32(38), 13309–13326. https://doi.org/10.1523/JNEUROSCI.2277-12.2012
Mahler, S. V., Moorman, D. E., Smith, R. J., James, M. H., & Aston‐Jones, G. (2014). Motivational activation: A unifying hypothesis of orexin/hypocretin function. Nature Neuroscience, 17(10), 1298–1303. https://doi.org/10.1038/nn.3810
Marchant, N. J., Hamlin, A. S., & McNally, G. P. (2009). Lateral hypothalamus is required for context‐induced reinstatement of extinguished reward seeking. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience., 29(5), 1331–1342. https://doi.org/10.1523/JNEUROSCI.5194-08.2009
Marcus, J. N., Aschkenasi, C. J., Lee, C. E., Chemelli, R. M., Saper, C. B., Yanagisawa, M., & Elmquist, J. K. (2001). Differential expression of orexin receptors 1 and 2 in the rat brain. The Journal of Comparative Neurology., 435(1), 6–25. https://doi.org/10.1002/cne.1190
Martin‐Fardon, R., Cauvi, G., Kerr, T. M., & Weiss, F. (2018). Differential role of hypothalamic orexin/hypocretin neurons in reward seeking motivated by cocaine versus palatable food. Addiction Biology, 23(1), 6–15. https://doi.org/10.1111/adb.12441
Martin‐Fardon, R., Zorrilla, E. P., Ciccocioppo, R., & Weiss, F. (2010). Role of innate and drug‐induced dysregulation of brain stress and arousal systems in addiction: Focus on corticotropin‐releasing factor, nociceptin/orphanin FQ, and orexin/hypocretin. Brain Research, 1314, 145–161. https://doi.org/10.1016/j.brainres.2009.12.027
Matzeu, A., Kerr, T. M., Weiss, F., & Martin‐Fardon, R. (2016). Orexin‐a/Hypocretin‐1 mediates cocaine‐seeking behavior in the posterior paraventricular nucleus of the thalamus via orexin/Hypocretin Receptor‐2. The Journal of Pharmacology and Experimental Therapeutics., 359(2), 273–279. https://doi.org/10.1124/jpet.116.235945
Matzeu, A., & Martin‐Fardon, R. (2021). Cocaine‐seeking behavior induced by orexin a Administration in the Posterior Paraventricular Nucleus of the thalamus is not long‐lasting: Neuroadaptation of the orexin system during cocaine abstinence. Frontiers in Behavioral Neuroscience., 15, 15. https://doi.org/10.3389/fnbeh.2021.620868
McElroy, S. L., Coloma, P. M., Berger, B., Guerdjikova, A. I., Joyce, J. M., Liebowitz, M. R., Pain, S., & Rabasa, C. (2023). Efficacy, safety, and tolerability of nivasorexant in adults with binge‐eating disorder: A randomized, phase II proof of concept trial. The International Journal of Eating Disorders, 56(11), 2120–2130. https://doi.org/10.1002/eat.24039
McGregor, R., Matzeu, A., Thannickal, T. C., Wu, F., Cornford, M., Martin‐Fardon, R., & Siegel, J. M. (2023). Sensitivity of Hypocretin system to chronic alcohol exposure: A human and animal study. Neuroscience, 522, 1–10. https://doi.org/10.1016/j.neuroscience.2023.04.018
McGregor, R., Shan, L., Wu, M. F., & Siegel, J. M. (2017). Diurnal fluctuation in the number of hypocretin/orexin and histamine producing: Implication for understanding and treating neuronal loss. PLoS ONE, 12(6), e0178573. https://doi.org/10.1371/journal.pone.0178573
Mehr, J. B., Bilotti, M. M., & James, M. H. (2021). Orexin (hypocretin) and addiction. Trends in Neurosciences, 44(11), 852–855. https://doi.org/10.1016/j.tins.2021.09.002
Mehr, J. B., Mitchison, D., Bowrey, H. E., & James, M. H. (2021). Sleep dysregulation in binge eating disorder and “food addiction”: The orexin (hypocretin) system as a potential neurobiological link. Neuropsychopharmacology, 46(12), 2051–2061. https://doi.org/10.1038/s41386-021-01052-z
Mieda, M., Hasegawa, E., Kisanuki, Y., Sinton, C., Yanagisawa, M., & Sakurai, T. (2011). Differential roles of orexin Receptor‐1 and ‐2 in the regulation of non‐REM and REM sleep. The Journal of Neuroscience., 31(17), 6518–6526. https://doi.org/10.1523/JNEUROSCI.6506-10.2011
Mieda, M., Willie, J. T., Hara, J., Sinton, C. M., Sakurai, T., & Yanagisawa, M. (2004). Orexin peptides prevent cataplexy and improve wakefulness in an orexin neuron‐ablated model of narcolepsy in mice. Proceedings of the National Academy of Sciences of the United States of America, 101(13), 4649–4654. https://doi.org/10.1073/pnas.0400590101
Mileykovskiy, B. Y., Kiyashchenko, L. I., & Siegel, J. M. (2005). Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron, 46(5), 787–798. https://doi.org/10.1016/j.neuron.2005.04.035
Mitchell, C. S., Campbell, E. J., Fisher, S. D., Stanton, L. M., Burton, N. J., Pearl, A. J., McNally, G. P., Bains, J. S., Füzesi, T., Graham, B. A., Manning, E. E., & Dayas, C. V. (2024). Optogenetic recruitment of hypothalamic corticotrophin‐releasing‐hormone (CRH) neurons reduces motivational drive. Transl Psychiatry, 14(1), 8. https://doi.org/10.1038/s41398-023-02710-0
Modaberi, S., Amirteymori, H., Mesgar, S., Eskandari, K., & Haghparast, A. (2023). The blockade of orexin receptors within the dentate gyrus of the hippocampus attenuated methamphetamine‐induced reward learning during conditioning place preference. Pharmacology Biochemistry and Behavior., 226, 173559. https://doi.org/10.1016/j.pbb.2023.173559
Mogenson, G. J., Swanson, L. W., & Wu, M. (1983). Neural projections from nucleus accumbens to globus pallidus, substantia innominata, and lateral preoptic‐lateral hypothalamic area: An anatomical and electrophysiological investigation in the rat. The Journal of Neuroscience, 3(1), 189–202. https://doi.org/10.1523/JNEUROSCI.03-01-00189.1983
Moorman, D. E., & Aston‐Jones, G. (2010). Orexin/Hypocretin modulates response of ventral tegmental dopamine neurons to prefrontal activation: Diurnal influences. The Journal of Neuroscience., 30(46), 15585–15599. https://doi.org/10.1523/JNEUROSCI.2871-10.2010
Moorman, D. E., James, M. H., Kilroy, E. A., & Aston‐Jones, G. (2017). Orexin/hypocretin‐1 receptor antagonism reduces ethanol self‐administration and reinstatement selectively in highly‐motivated rats. Brain Research, 1654(Pt A), 34–42. https://doi.org/10.1016/j.brainres.2016.10.018
Mullett, M. A., Billington, C. J., Levine, A. S., & Kotz, C. M. (2000). Hypocretin I in the lateral hypothalamus activates key feeding‐regulatory brain sites. Neuroreport, 11(1), 103–108. https://doi.org/10.1097/00001756-200001170-00021
Muschamp, W. A., Hollander, J. A., Thompson, J. L., Voren, G., Hassinger, L. C., Onvani, S., Kamenecka, T. M., Borgland, S. L., Kenny, P. J., & Carlezon, W. A. Jr (2014). Hypocretin (orexin) facilitates reward by attenuating the antireward effects of its cotransmitter dynorphin in ventral tegmental area. Proceedings of the National Academy of Sciences of the United States of America, 111(16), E1648–E1655. https://doi.org/10.1073/pnas.1315542111
Nagahara, T., Saitoh, T., Kutsumura, N., Irukayama‐Tomobe, Y., Ogawa, Y., Kuroda, D., Gouda, H., Kumagai, H., Fujii, H., Yanagisawa, M., & Nagase, H. (2015). Design and synthesis of non‐peptide, selective orexin receptor 2 agonists. Journal of Medicinal Chemistry., 58(20), 7931–7937. https://doi.org/10.1021/acs.jmedchem.5b00988
Nair, S. G., Golden, S. A., & Shaham, Y. (2008). Differential effects of the hypocretin 1 receptor antagonist SB 334867 on high‐fat food self‐administration and reinstatement of food seeking in rats. British Journal of Pharmacology., 154(2), 406–416. https://doi.org/10.1038/bjp.2008.3
Nambu, T., Sakurai, T., Mizukami, K., Hosoya, Y., Yanagisawa, M., & Goto, K. (1999). Distribution of orexin neurons in the adult rat brain1Published on the world wide web on 17 march 1999.1. Brain Research., 827(1), 243–260. https://doi.org/10.1016/S0006-8993(99)01336-0
Narita, M., Nagumo, Y., Hashimoto, S., Narita, M., Khotib, J., Miyatake, M., Sakurai, T., Yanagisawa, M., Nakamachi, T., Shioda, S., & Suzuki, T. (2006). Direct involvement of orexinergic systems in the activation of the mesolimbic dopamine pathway and related behaviors induced by morphine. Journal of Neuroscience., 26(2), 398–405. https://doi.org/10.1523/JNEUROSCI.2761-05.2006
Nevárez, N., & de Lecea, L. (2018). Recent advances in understanding the roles of hypocretin/orexin in arousal, affect, and motivation. F1000Res, 7, 7. https://doi.org/10.12688/f1000research.15097.1
Nocjar, C., Zhang, J., Feng, P., & Panksepp, J. (2012). The social defeat animal model of depression shows diminished levels of orexin in mesocortical regions of the dopamine system, and of dynorphin and orexin in the hypothalamus. Neuroscience, 218, 138–153. https://doi.org/10.1016/j.neuroscience.2012.05.033
Nollet, M., Gaillard, P., Minier, F., Tanti, A., Belzung, C., & Leman, S. (2011). Activation of orexin neurons in dorsomedial/perifornical hypothalamus and antidepressant reversal in a rodent model of depression. Neuropharmacology, 61(1), 336–346. https://doi.org/10.1016/j.neuropharm.2011.04.022
Nollet, M., Gaillard, P., Tanti, A., Girault, V., Belzung, C., & Leman, S. (2012). Neurogenesis‐independent antidepressant‐like effects on behavior and stress axis response of a dual orexin receptor antagonist in a rodent model of depression. Neuropsychopharmacology, 37(10), 2210–2221. https://doi.org/10.1038/npp.2012.70
O'Connor Eoin, C., Kremer, Y., Lefort, S., Harada, M., Pascoli, V., Rohner, C., & Lüscher, C. (2015). Accumbal D1R neurons projecting to lateral hypothalamus authorize feeding. Neuron, 88(3), 553–564. https://doi.org/10.1016/j.neuron.2015.09.038
Olney, J. J., Navarro, M., & Thiele, T. E. (2015). Binge‐like consumption of ethanol and other salient reinforcers is blocked by orexin‐1 receptor inhibition and leads to a reduction of hypothalamic orexin immunoreactivity. Alcoholism, Clinical and Experimental Research, 39(1), 21–29. https://doi.org/10.1111/acer.12591
Olney, J. J., Navarro, M., & Thiele, T. E. (2017). The role of orexin signaling in the ventral tegmental area and central amygdala in modulating binge‐like ethanol drinking behavior. Alcoholism, Clinical and Experimental Research, 41(3), 551–561. https://doi.org/10.1111/acer.13336
Panhelainen, A. E., & Korpi, E. R. (2012). Evidence for a role of inhibition of orexinergic neurons in the anxiolytic and sedative effects of diazepam: A c‐Fos study. Pharmacology, Biochemistry, and Behavior., 101(1), 115–124. https://doi.org/10.1016/j.pbb.2011.12.011
Pantazis, C. B., James, M. H., Bentzley, B. S., & Aston‐Jones, G. (2019). The number of lateral hypothalamus orexin/hypocretin neurons contributes to individual differences in cocaine demand. Addiction Biology, 25(4) Portico. https://doi.org/10.1111/adb.12795
Pantazis, C. B., James, M. H., O’Connor, S., Shin, N., & Aston‐Jones, G. (2022). Orexin‐1 receptor signaling in ventral tegmental area mediates cue‐driven demand for cocaine. Neuropsychopharmacology, 47(3), 741–751. https://doi.org/10.1038/s41386-021-01173-5
Pasumarthi, R. K., Reznikov, L. R., & Fadel, J. (2006). Activation of orexin neurons by acute nicotine. European Journal of Pharmacology, 535(1), 172–176. https://doi.org/10.1016/j.ejphar.2006.02.021
Perez‐Leighton, C., Little, M. R., Grace, M., Billington, C., & Kotz, C. M. (2017). Orexin signaling in rostral lateral hypothalamus and nucleus accumbens shell in the control of spontaneous physical activity in high‐ and low‐activity rats. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 312(3), R338–r46. https://doi.org/10.1152/ajpregu.00339.2016
Peyron, C., Tighe, D. K., van den Pol, A. N., de Lecea, L., Heller, H. C., Sutcliffe, J. G., & Kilduff, T. S. (1998). Neurons containing hypocretin (orexin) project to multiple neuronal systems. The Journal of Neuroscience, 18(23), 9996–10015. https://doi.org/10.1523/JNEUROSCI.18-23-09996.1998
Piccoli, L., Micioni Di Bonaventura, M. V., Cifani, C., Costantini, V. J., Massagrande, M., Montanari, D., Martinelli, P., Antolini, M., Ciccocioppo, R., Massi, M., & Merlo‐Pich, E. (2012). Role of orexin‐1 receptor mechanisms on compulsive food consumption in a model of binge eating in female rats. Neuropsychopharmacology, 37(9), 1999–2011. https://doi.org/10.1038/npp.2012.48
Prasad, A. A., & McNally, G. P. (2014). Effects of vivo Morpholino knockdown of lateral hypothalamus orexin/Hypocretin on renewal of alcohol seeking. PLoS ONE, 9(10), e110385. https://doi.org/10.1371/journal.pone.0110385
Qi, K., Wei, C., Li, Y., & Sui, N. (2013). Orexin receptors within the nucleus accumbens shell mediate the stress but not drug priming‐induced reinstatement of morphine conditioned place preference. Frontiers in Behavioral Neuroscience., 7, 144. https://doi.org/10.3389/fnbeh.2013.00144
Rao, Y., Liu, Z. W., Borok, E., Rabenstein, R. L., Shanabrough, M., Lu, M., Picciotto, M. R., Horvath, T. L., & Gao, X. B. (2007). Prolonged wakefulness induces experience‐dependent synaptic plasticity in mouse hypocretin/orexin neurons. The Journal of Clinical Investigation, 117(12), 4022–4033. https://doi.org/10.1172/JCI32829
Reynolds, S. M., & Berridge, K. C. (2001). Fear and feeding in the nucleus accumbens shell: Rostrocaudal segregation of GABA‐elicited defensive behavior versus eating behavior. The Journal of Neuroscience, 21(9), 3261–3270. https://doi.org/10.1523/JNEUROSCI.21-09-03261.2001
Richards, J. K., Simms, J. A., Steensland, P., Taha, S. A., Borgland, S. L., Bonci, A., & Bartlett, S. E. (2008). Inhibition of orexin‐1/hypocretin‐1 receptors inhibits yohimbine‐induced reinstatement of ethanol and sucrose seeking in long‐Evans rats. Psychopharmacology, 199(1), 109–117. https://doi.org/10.1007/s00213-008-1136-5
Rodgers, R. J., Halford, J. C., Nunes de Souza, R. L., Canto de Souza, A. L., Piper, D. C., Arch, J. R., Upton, N., Porter, R. A., Johns, A., & Blundell, J. E. (2001). SB‐334867, a selective orexin‐1 receptor antagonist, enhances behavioural satiety and blocks the hyperphagic effect of orexin‐a in rats. The European Journal of Neuroscience, 13(7), 1444–1452. https://doi.org/10.1046/j.0953-816x.2001.01518.x
Rorabaugh, J. M., Stratford, J. M., & Zahniser, N. R. (2014). A relationship between reduced nucleus Accumbens Shell and enhanced lateral hypothalamic orexin neuronal activation in long‐term fructose bingeing behavior. PLoS ONE, 9(4), e95019. https://doi.org/10.1371/journal.pone.0095019
Rossi, M. A., & Stuber, G. D. (2018). Overlapping brain circuits for homeostatic and hedonic feeding. Cell Metabolism, 27(1), 42–56. https://doi.org/10.1016/j.cmet.2017.09.021
Saito, Y. C., Maejima, T., Nishitani, M., Hasegawa, E., Yanagawa, Y., Mieda, M., & Sakurai, T. (2018). Monoamines inhibit GABAergic neurons in ventrolateral preoptic area that make direct synaptic connections to hypothalamic arousal neurons. The Journal of Neuroscience., 38(28), 6366–6378. https://doi.org/10.1523/JNEUROSCI.2835-17.2018
Sakurai, T., Amemiya, A., Ishii, M., Matsuzaki, I., Chemelli, R. M., Tanaka, H., Williams, S. C., Richardson, J. A., Kozlowski, G. P., Wilson, S., Arch, J. R. S., Buckingham, R. E., Haynes, A. C., Carr, S. A., Annan, R. S., McNulty, D. E., Liu, W. S., Terrett, J. A., Elshourbagy, N. A., … Yanagisawa, M. (1998). Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein‐coupled receptors that regulate feeding behavior. Cell, 92(4), 573–585. https://doi.org/10.1016/S0092-8674(00)80949-6
Sakurai, T., Nagata, R., Yamanaka, A., Kawamura, H., Tsujino, N., Muraki, Y., Kageyama, H., Kunita, S., Takahashi, S., Goto, K., Koyama, Y., Shioda, S., & Yanagisawa, M. (2005). Input of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice. Neuron, 46(2), 297–308. https://doi.org/10.1016/j.neuron.2005.03.010
Schmeichel, B. E., Herman, M. A., Roberto, M., & Koob, G. F. (2017). Hypocretin neurotransmission within the central amygdala mediates escalated cocaine self‐administration and stress‐induced reinstatement in rats. Biological Psychiatry, 81(7), 606–615. https://doi.org/10.1016/j.biopsych.2016.06.010
Schmidt, F. M., Arendt, E., Steinmetzer, A., Bruegel, M., Kratzsch, J., Strauss, M., Baum, P., & Hegerl, U. (2011). CSF‐hypocretin‐1 levels in patients with major depressive disorder compared to healthy controls. Psychiatry Research, 190(2–3), 240–243. https://doi.org/10.1016/j.psychres.2011.06.004
Scott, M. M., Marcus, J. N., Pettersen, A., Birnbaum, S. G., Mochizuki, T., Scammell, T. E., Nestler, E. J., Elmquist, J. K., & Lutter, M. (2011). Hcrtr1 and 2 signaling differentially regulates depression‐like behaviors. Behavioural Brain Research., 222(2), 289–294. https://doi.org/10.1016/j.bbr.2011.02.044
Shirasaka, T., Miyahara, S., Kunitake, T., Jin, Q. H., Kato, K., Takasaki, M., & Kannan, H. (2001). Orexin depolarizes rat hypothalamic paraventricular nucleus neurons. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 281(4), R1114–R1118. https://doi.org/10.1152/ajpregu.2001.281.4.R1114
Shirazy, M., RayatSanati, K., Jamali, S., Motamedi, F., & Haghparast, A. (2020). Role of orexinergic receptors in the dentate gyrus of the hippocampus in the acquisition and expression of morphine‐induced conditioned place preference in rats. Behavioural Brain Research., 379, 112349. https://doi.org/10.1016/j.bbr.2019.112349
Stratford, T. R., & Kelley, A. E. (1999). Evidence of a functional relationship between the nucleus accumbens shell and lateral hypothalamus subserving the control of feeding behavior. The Journal of Neuroscience, 19(24), 11040–11048. https://doi.org/10.1523/JNEUROSCI.19-24-11040.1999
Stuber, G. D., & Wise, R. A. (2016). Lateral hypothalamic circuits for feeding and reward. Nature Neuroscience, 19(2), 198–205. https://doi.org/10.1038/nn.4220
Suarez, A. N., Liu, C. M., Cortella, A. M., Noble, E. E., & Kanoski, S. E. (2020). Ghrelin and orexin interact to increase meal size through a descending hippocampus to hindbrain signaling pathway. Biological Psychiatry, 87(11), 1001–1011. https://doi.org/10.1016/j.biopsych.2019.10.012
Sweet, D. C., Levine, A. S., Billington, C. J., & Kotz, C. M. (1999). Feeding response to central orexins. Brain Research., 821(2), 535–538. https://doi.org/10.1016/S0006-8993(99)01136-1
Terrill, S. J., Hyde, K. M., Kay, K. E., Greene, H. E., Maske, C. B., Knierim, A. E., Davis, J. F., & Williams, D. L. (2016). Ventral tegmental area orexin 1 receptors promote palatable food intake and oppose postingestive negative feedback. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 311(3), R592–R599. https://doi.org/10.1152/ajpregu.00097.2016
Thannickal, T. C., John, J., Shan, L., Swaab, D. F., Wu, M. F., Ramanathan, L., McGregor, R., Chew, K. T., Cornford, M., Yamanaka, A., Inutsuka, A., Fronczek, R., Lammers, G. J., Worley, P. F., & Siegel, J. M. (2018). Opiates increase the number of hypocretin‐producing cells in human and mouse brain and reverse cataplexy in a mouse model of narcolepsy. Science Translational Medicine., 10(447), eaao4953. https://doi.org/10.1126/scitranslmed.aao4953
Thomas, C. S., Mohammadkhani, A., Rana, M., Qiao, M., Baimel, C., & Borgland, S. L. (2022). Optogenetic stimulation of lateral hypothalamic orexin/dynorphin inputs in the ventral tegmental area potentiates mesolimbic dopamine neurotransmission and promotes reward‐seeking behaviours. Neuropsychopharmacology, 47(3), 728–740. https://doi.org/10.1038/s41386-021-01196-y
Thompson, J. L., & Borgland, S. L. (2011). A role for hypocretin/orexin in motivation. Behavioural Brain Research., 217(2), 446–453. https://doi.org/10.1016/j.bbr.2010.09.028
Thorpe, A. J., & Kotz, C. M. (2005). Orexin a in the nucleus accumbens stimulates feeding and locomotor activity. Brain Research., 1050(1–2), 156–162. https://doi.org/10.1016/j.brainres.2005.05.045
Thorpe, A. J., Teske, J. A., & Kotz, C. M. (2005). Orexin A‐induced feeding is augmented by caloric challenge. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 289(2), R367–r72. https://doi.org/10.1152/ajpregu.00737.2004
True, C., Arik, A., Lindsley, S., Kirigiti, M., Sullivan, E., & Kievit, P. (2018). Early high‐fat diet exposure causes dysregulation of the orexin and dopamine neuronal populations in nonhuman primates. Front Endocrinol (Lausanne)., 9, 508. https://doi.org/10.3389/fendo.2018.00508
Tung, L.‐W., Lu, G.‐L., Lee, Y.‐H., Yu, L., Lee, H.‐J., Leishman, E., Bradshaw, H., Hwang, L. L., Hung, M. S., Mackie, K., Zimmer, A., & Chiou, L. C. (2016). Orexins contribute to restraint stress‐induced cocaine relapse by endocannabinoid‐mediated disinhibition of dopaminergic neurons. Nature Communications, 7(1), 12199. https://doi.org/10.1038/ncomms12199
Ubaldi, M., Giordano, A., Severi, I., Li, H., Kallupi, M., de Guglielmo, G., Ruggeri, B., Stopponi, S., Ciccocioppo, R., & Cannella, N. (2016). Activation of Hypocretin‐1/orexin‐a neurons projecting to the bed nucleus of the Stria terminalis and paraventricular nucleus is critical for reinstatement of alcohol seeking by neuropeptide S. Biological Psychiatry, 79(6), 452–462. https://doi.org/10.1016/j.biopsych.2015.04.021
Ulrich‐Lai, Y. M., Figueiredo, H. F., Ostrander, M. M., Choi, D. C., Engeland, W. C., & Herman, J. P. (2006). Chronic stress induces adrenal hyperplasia and hypertrophy in a subregion‐specific manner. American Journal of Physiology‐Endocrinology and Metabolism., 291(5), E965–E973. https://doi.org/10.1152/ajpendo.00070.2006
Venner, A., Karnani, M. M., Gonzalez, J. A., Jensen, L. T., Fugger, L., & Burdakov, D. (2011). Orexin neurons as conditional glucosensors: Paradoxical regulation of sugar sensing by intracellular fuels. The Journal of Physiology, 589(Pt 23), 5701–5708. https://doi.org/10.1113/jphysiol.2011.217000
Vickers, S. P., Hackett, D., Murray, F., Hutson, P. H., & Heal, D. J. (2015). Effects of lisdexamfetamine in a rat model of binge‐eating. Journal of Psychopharmacology, 29(12), 1290–1307. https://doi.org/10.1177/0269881115615107
Villano, I., Messina, A., Valenzano, A., Moscatelli, F., Esposito, T., Monda, V., Esposito, M., Precenzano, F., Carotenuto, M., Viggiano, A., Chieffi, S., Cibelli, G., Monda, M., & Messina, G. (2017). Basal forebrain cholinergic system and orexin neurons: Effects on attention. Frontiers in Behavioral Neuroscience., 11, 10. https://doi.org/10.3389/fnbeh.2017.00010
Vittoz, N. M., Schmeichel, B., & Berridge, C. W. (2008). Hypocretin/orexin preferentially activates caudomedial ventral tegmental area dopamine neurons. The European Journal of Neuroscience, 28(8), 1629–1640. https://doi.org/10.1111/j.1460-9568.2008.06453.x
Volkoff, H., Bjorklund, J. M., & Peter, R. E. (1999). Stimulation of feeding behavior and food consumption in the goldfish, Carassius auratus, by orexin‐A and orexin‐B. Brain Research, 846(2), 204–209. https://doi.org/10.1016/S0006-8993(99)02052-1
Volkow, N. D., Wise, R. A., & Baler, R. (2017). The dopamine motive system: Implications for drug and food addiction. Nature Reviews Neuroscience., 18(12), 741–752. https://doi.org/10.1038/nrn.2017.130
Winsky‐Sommerer, R., Yamanaka, A., Diano, S., Borok, E., Roberts, A. J., Sakurai, T., Kilduff, T. S., Horvath, T. L., & de Lecea, L. (2004). Interaction between the corticotropin‐releasing factor system and hypocretins (orexins): A novel circuit mediating stress response. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience., 24(50), 11439–11448. https://doi.org/10.1523/JNEUROSCI.3459-04.2004
Wortley, K. E., Chang, G. Q., Davydova, Z., & Leibowitz, S. F. (2003). Peptides that regulate food intake: Orexin gene expression is increased during states of hypertriglyceridemia. American Journal of Physiology Regulatory, Integrative and Comparative Physiology., 284(6), R1454–R1465. https://doi.org/10.1152/ajpregu.00286.2002
Xia, J., Chen, X., Song, C., Ye, J., Yu, Z., & Hu, Z. (2005). Postsynaptic excitation of prefrontal cortical pyramidal neurons by hypocretin‐1/orexin a through the inhibition of potassium currents. Journal of Neuroscience Research, 82(5), 729–736. https://doi.org/10.1002/jnr.20667
Yaeger, J. D. W., Krupp, K. T., Jacobs, B. M., Onserio, B. O., Meyerink, B. L., Cain, J. T., Ronan, P. J., Renner, K. J., DiLeone, R. J., & Summers, C. H. (2022). Orexin 1 receptor antagonism in the basolateral amygdala shifts the balance from pro‐ to Antistress signaling and behavior. Biological Psychiatry, 91(9), 841–852. https://doi.org/10.1016/j.biopsych.2021.12.019
Yamada, H., Okumura, T., Motomura, W., Kobayashi, Y., & Kohgo, Y. (2000). Inhibition of food intake by central injection of anti‐orexin antibody in fasted rats. Biochemical and Biophysical Research Communications, 267(2), 527–531. https://doi.org/10.1006/bbrc.1999.1998
Yamanaka, A., Beuckmann, C. T., Willie, J. T., Hara, J., Tsujino, N., Mieda, M., Tominaga, M., Yagami, K. I., Sugiyama, F., Goto, K., Yanagisawa, M., & Sakurai, T. (2003). Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron, 38(5), 701–713. https://doi.org/10.1016/S0896-6273(03)00331-3
Yeoh, J. W., Campbell, E. J., James, M. H., Graham, B. A., & Dayas, C. V. (2014). Orexin antagonists for neuropsychiatric disease: Progress and potential pitfalls. Frontiers in Neuroscience, 8, 36. https://doi.org/10.3389/fnins.2014.00036
Yeoh, J. W., James, M. H., Adams, C. D., Bains, J. S., Sakurai, T., Aston‐Jones, G., Graham, B. A., & Dayas, C. V. (2019). Activation of lateral hypothalamic group III metabotropic glutamate receptors suppresses cocaine‐seeking following abstinence and normalizes drug‐associated increases in excitatory drive to orexin/hypocretin cells. Neuropharmacology, 154, 22–33. https://doi.org/10.1016/j.neuropharm.2018.09.033
Yeoh, J. W., James, M. H., Jobling, P., Bains, J. S., Graham, B. A., & Dayas, C. V. (2012). Cocaine potentiates excitatory drive in the perifornical/lateral hypothalamus. The Journal of Physiology, 590(16), 3677–3689. https://doi.org/10.1113/jphysiol.2012.230268
Yokobori, E., Kojima, K., Azuma, M., Kang, K. S., Maejima, S., Uchiyama, M., & Matsuda, K. (2011). Stimulatory effect of intracerebroventricular administration of orexin a on food intake in the zebrafish, Danio rerio. Peptides., 32(7), 1357–1362. https://doi.org/10.1016/j.peptides.2011.05.010
Yoshida, K., McCormack, S., España, R. A., Crocker, A., & Scammell, T. E. (2006). Afferents to the orexin neurons of the rat brain. The Journal of Comparative Neurology, 494(5), 845–861. https://doi.org/10.1002/cne.20859
Yuan, Y., Wu, W., Chen, M., Cai, F., Fan, C., Shen, W., Sun, W., & Hu, J. (2019). Reward inhibits paraventricular CRH neurons to relieve stress. Current Biology, 29(7), 1243–51.e4. https://doi.org/10.1016/j.cub.2019.02.048
Zhang, V. Y., O’Connor, S. L., Welsh, W. J., & James, M. H. (2024). Machine learning models to predict ligand binding affinity for the orexin 1 receptor. Artificial Intelligence Chemistry, 2(1), 100040. https://doi.org/10.1016/j.aichem.2023.100040
Zheng, H., Patterson, L. M., & Berthoud, H. R. (2007). Orexin signaling in the ventral tegmental area is required for high‐fat appetite induced by opioid stimulation of the nucleus accumbens. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience., 27(41), 11075–11082. https://doi.org/10.1523/JNEUROSCI.3542-07.2007